

Java COM

2 JANUARY 2000

BEA
www.beasys.com

3JANUARY 2000

Java COM

Protoview
www.protoview.com

Java COM

4 JANUARY 2000

Symantec
www.visualcafe.com

5JANUARY 2000

Java COM

SEAN RHODY, EDITOR-IN-CHIEF

A
re you nimble enough? That seems to be the new buzzword in the
Internet world. Nimble. Nimbleness. Nimbler. My development team
is nimbler than yours. Being nimble is the name of the game today. It’s
not enough to be good developers, we’ve got to be quick developers.

What’s driving this? What’s wrong with the way we’ve been doing busi-
ness? I can name that tune in two words – the Internet. The sensational-
ism surrounding each new dot.com IPO has created a market in which the
business plan is to be first at any cost. Many of the companies going pub-
lic nowadays have a business plan that calls for them to lose money for

several years in order to gain market share.
I’m not a strategist, but some of my colleagues who are assure me that there are precedents

for this that are too important to ignore. It’s almost always the first person in a market that
controls the market share. Sometimes there’s a significant financial barrier to switching. But
often it may simply be inertia – people tend to stay with what they know. Better the devil you
know than the devil you don’t.

Another contributor is the knowledge that in six months someone can completely
rearrange a market with an innovative site. It was pointed out to me that 18 months ago, if
you’d walked in to a hotel, or the office of an airline, and told them that today they would be
selling their surplus to customers at a price the customer set, they’d have laughed in your face,
if not tossed you out into the street and called the guys with the white coats. Today price-
line.com is quietly laughing. All right, maybe gloating is a better word. “I told you priceline
would be big, really big!” Beam me up, Scotty.

So what we have is an environment in which market share matters more than profitability,
and one in which six months is an eternity. Web time. We’re all now on Web time.

And that leads us to the “nimble” question. It’s one thing to go in and do business analysis
for several months prior to starting development with a company that already has a going
business and looks at the Net as a way to either grow that business or fend off online com-
petitors. Companies like Merrill Lynch could afford to hold back and get their sites down pat.
They had the business, although the DLJs of the world were hurting them.

But to companies that have no business, every day is an eternity. You can add up the oppor-
tunity cost, then toss in the development costs, and begin to understand the pained look in
the eyes of every prerelease CEO. The Internet has removed a number of barriers to entry in
the marketplace, and anyone can build a site in their garage that can impact the world. Time
is not of the essence. It is the essence.

And that makes development really interesting. Just like that old Chinese curse, “May you
live in interesting times.” Welcome to “interesting,” population unknown.

So how do we accomplish “nimbleness”…or is it “nimbility”? I’ve got a set of answers that I
think works, but it comes down to the same old answer to the question “How do you get to
Carnegie Hall?” – practice, practice, practice.

One of the first keys to nimbledom, to my mind at least, is having a team that’s worked
together before. Not necessarily everybody; there’s room for newcomers on every project. But
a core team that’s jelled as a unit is a real jump start.

Another key to being nimble is familiarity with the tools, languages and paradigms used to
do development. Use what you know; know what you use. When developers know the tools,
they can focus on the project rather than on the environment.

Add tools that are complementary, not competitive. Look at your current toolset when
selecting a new product. For example, several commercial personalization engines are avail-
able, some Java-based, some not. It’s a lot more difficult to integrate the ones that aren’t –
sometimes speed-to-market should drive the technology decision, not marketing hype.

Develop, or buy, frameworks to increase productivity – then learn them. My team has a
framework that we spent a great deal of time perfecting, but it saves us months of develop-
ment time every time we hit a new project. That’s because we know how we’re going to build
it, and at least a quarter of the project code is already built because of the framework.

The value we can bring to the business world by achieving nimbleness is almost incalcula-
ble, but the true essence of nimbledom is speed. Web time waits for no one. In the time it took
me to write this article and get it to press, someone nimble developed and built a new e-com-
merce site. And someone else is still in the planning stages.

Good luck, and stay nimble.

F R O M T H E E D I T O R

E D I T O R I A L A D V I S O R Y B O A R D
TED COOMBS, BILL DUNLAP, DAVID GEE, MICHEL GERIN,

ARTHUR VAN HOFF, JOHN OLSON, GEORGE PAOLINI,
KIM POLESE, SEAN RHODY, RICK ROSS,

AJIT SAGAR, RICHARD SOLEY, ALAN WILLIAMSON

EDITOR-IN-CHIEF: SEAN RHODY
EXECUTIVE EDITOR: M’LOU PINKHAM

ART DIRECTOR: ALEX BOTERO
PRODUCTION EDITOR: CHERYL VAN SISE

ASSOCIATE EDITOR: NANCY VALENTINE
EDITORIAL CONSULTANT: SCOTT DAVISON

TECHNICAL EDITOR: BAHADIR KARUV
PRODUCT REVIEW EDITOR: ED ZEBROWSKI

INDUSTRY NEWS EDITOR: ALAN WILLIAMSON
E-COMMERCE EDITOR: AJIT SAGAR

W R I T E R S I N T H I S I S S U E
RUSLAN BELKIN, GENE CALLAHAN, ROB DODSON, S. ALAN EZUST,
SCOTT GRANT, JIM MILBERY, TIM MOYLE, PATRICK SEAN NEVILLE,

JOHN OLSON, GEORGE PAOLINI, SIMON PHIPPS,
VISWANATH RAMACHANDRAN, SEAN RHODY, AJIT SAGAR,

TODD SCALLAN, SESH VENUGOPAL, JASON WESTRA, ALAN WILLIAMSON

S U B S C R I P T I O N S
FOR SUBSCRIPTIONS AND REQUESTS FOR BULK ORDERS,

PLEASE SEND YOUR LETTERS TO SUBSCRIPTION DEPARTMENT

SUBSCRIPTION HOTLINE: 800 513-7111
COVER PRICE: $4.99/ISSUE

DOMESTIC: $49/YR. (12 ISSUES) CANADA/MEXICO: $69/YR.
OVERSEAS: BASIC SUBSCRIPTION PRICE PLUS AIRMAIL POSTAGE

(U.S. BANKS OR MONEY ORDERS). BACK ISSUES: $12 EACH

PUBLISHER, PRESIDENT AND CEO: FUAT A. KIRCAALI
VICE PRESIDENT, PRODUCTION: JIM MORGAN

VICE PRESIDENT, MARKETING: CARMEN GONZALEZ
CHIEF FINANCIAL OFFICER: IGNACIO ARELLANO
ACCOUNTING MANAGER: ELI HOROWITZ
CIRCULATION MANAGER: MARY ANN MCBRIDE

ADVERTISING ACCOUNT MANAGERS: ROBYN FORMA
MEGAN RING

JDJSTORE.COM: JACLYN REDMOND
ADVERTISING ASSISTANT: CHRISTINE RUSSELL
GRAPHIC DESIGN INTERN: AARATHI VENKATARAMAN

WEBMASTER: ROBERT DIAMOND
WEB EDITOR: BARD DEMA

WEB SERVICES CONSULTANT: BRUNO Y. DECAUDIN
WEB SERVICES INTERN: DIGANT B. DAVE

CUSTOMER SERVICE: SIAN O’GORMAN
ANN MARIE MILILLO

ONLINE CUSTOMER SERVICE: AMANDA MOSKOWITZ

E D I T O R I A L O F F I C E S
SYS-CON PUBLICATIONS, INC.

39 E. CENTRAL AVE., PEARL RIVER, NY 10965
TELEPHONE: 914 735-7300 FAX: 914 735-6547

SUBSCRIBE@SYS-CON.COM
JAVA DEVELOPER’S JOURNAL (ISSN#1087-6944)

is published monthly (12 times a year) for $49.00 by
SYS-CON Publications, Inc., 39 E. Central Ave., Pearl River, NY 10965-2306.

Periodicals Postage rates are paid at
Pearl River, NY 10965 and additional mailing offices.

POSTMASTER: Send address changes to:
JAVA DEVELOPER’S JOURNAL, SYS-CON Publications, Inc.,

39 E. Central Ave., Pearl River, NY 10965-2306.

© C O P Y R I G H T
Copyright © 1999 by SYS-CON Publications, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy or any information storage and
retrieval system, without written permission. For promotional reprints, contact reprint
coordinator. SYS-CON Publications, Inc., reserves the right to revise, republish and

authorize its readers to use the articles submitted for publication.

W O R L D W I D E D I S T R I B U T I O N B Y
CURTIS CIRCULATION COMPANY

739 RIVER ROAD, NEW MILFORD NJ 07646-3048 PHONE: 201 634-7400

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc.,
in the United States and other countries. SYS-CON Publications, Inc., is independent of Sun
Microsystems, Inc. All brand and product names used on these pages are trade names,

service marks or trademarks of their respective companies.

SYS-CON
PUBLICATIONS

Jack, Be Nimble

sean@sys-con.com
AUTHOR BIO

Sean Rhody is the editor-in-chief of Java Developer’s Journal. He is also a principal consultant with Computer Sciences Corporation
where he specilaizes in application architecture – particularly distributed systems.

Java COM

6 JANUARY 2000

Together Soft
www.togethersoft.com

SUBSCRIPTION HOTLINE

1 800-513-7111
International Subscriptions

& Customer Service Inquiries
914 735-1900

or by fax: 914 735-3922
E-mail: Subscribe@SYS-CON.com

http://www.SYS-CON.com
Mail All Subscription Orders or
Customer Service Inquiries to:

CUSTOMER SERVICE
Phone: 914 735-1900 • Fax: 914 735-3922

ADVERTISING & SALES
Phone: 914 735-0300 • Fax: 914 735-7302

EDITORIAL DEPT.
Phone: 914 735-7300 • Fax: 914 735-6547

PRODUCTION/ART DEPT.
Phone: 914 735-7300 • Fax: 914 735-6547

WORLDWIDE DISTRIBUTION by
Curtis Circulation Company

739 River Road, New Milford, NJ 07646-3048
Phone: 201 634-7400

DISTRIBUTED in the USA by
International Periodical Distributors

674 Via De La Valle, Suite 204
Solana Beach, CA 92075

Phone: 619 481-5928

www.PowerBuilderJournal.com

www.ColdFusionJournal.com

http://www.JBuilderJournal.com

www.TangoJournal.com

www.TangoJournal.com

www.JavaDevelopersJournal.com

CONTACT ESSENTIALS

7JANUARY 2000

Java COM

A
t work, Lisa takes advantage of her employer’s dedicated T-3 to quick-
ly access live NASDAQ quotes via a Java applet stock ticker. She spends
each day alternating between development work and day trading.
Soon to be rich, she dreams of early retirement and a life filled with
leisure activities and day trading at home. Back at home her lack of
patience and 56K connection make day trading a painfully slow tor-
ture. Java and 56K aren’t meant to be together.

Unfortunately, most of the 50 million regular Internet users worldwide are ecstatic if they can
even achieve 56K. High-speed connectivity is common to businesses but is out of financial reach
of the average home-based Internet user. To be successful, consumer-targeted Web sites have to
provide content quickly, because consumers won’t wait. So while businesses enjoy IP-delivered,
feature-rich Java applications and applets, the general public is relegated to HTML and JavaScript
Web sites. For Internet development, narrow throughput has resulted in Java’s being used only for
specialty applets and Web sites that target businesses.

That is soon to change.
The final quarter of 1999 was filled with initial public offerings for Internet infrastructure com-

panies frantically trying to raise huge quantities of money. These companies are scrambling to
bring high-speed Internet services to home-based consumers before their competitors do. Tens of
billions of dollars are being raised and spent to take advantage of and enhance existing cabling as
well as solve “local loop” bottlenecks by laying down high-speed connections from national data
backbones to local switches and even to the end users. Medium and small-sized businesses, and
even homes, will have fiber optic connections. The frenzy is spreading to Europe, Asia and Latin
America. While AT&T and several competing cable companies intend to deliver cable modem ser-
vice to more than 10 million Americans by the end of 2000, numerous other compa-
nies are using wireless technologies to win the business of those same con-
sumers. Though a latecomer, digital subscriber line (DSL) technology is now
growing at nearly the same subscription rate as cable modems because near-
ly every home in North America is wired for telephone while a large percent-
age aren’t wired for cable. A recent federal law forcing regional phone companies
to lease existing phone lines to other DSL providers means DSL availability could
soon exceed that of cable modem services. The fierceness of the competition, as
well as the vast size of the yet untapped market, mean that reasonably priced
high-speed data access should be available to your home by the end of the year,
if it isn’t already.

With the fatter pipes and much higher consumer access speeds, time-con-
suming downloads will no longer be a limiting factor to using Java in consumer
Web sites. I believe we’ll see an incredible transformation of the Web. Highly
interactive, rich and full-featured sites will become the norm.
Java use will explode.

Sure, the problem remains that not all Internet users will have
high-speed Internet access. As with many Web sites that exist
today, Web developers will provide both high-featured Java and
low-feature HTML/JavaScript versions of their sites. However,
affordable ISP costs will result in high-speed access becom-
ing the standard in North America, even for home-based users.

A few years ago it looked as though Java was going to take over
the world – and fast. But performance problems, particularly due to
download times for IP access, made Java use infeasible for broad
Internet use. Now it looks like that barrier is being
removed and Java will finally become the standard language for
Internet development.

JOHN OLSON, PRESIDENT OF DEVELOPOWER, INC.
G U E S T E D I T O R I A L

AUTHOR BIO
John Olson is president of Developower, Inc., a software consulting firm specializing in multitier solutions. A member of JDJ’s Editorial Board, John is
also editor-in-chief of PowerBuilder Developer’s Journal.

john@sys-con.com

Fat Pipes Boost Java Flow

8 JANUARY 2000

Java COM

J D J F E A T U R E

I
n the last couple of years Sun has introduced a number of

APIs targeted toward enterprise application development.

One of the most exciting of these is the Java Message Service,

or JMS. The JMS API is designed to do for messaging in the

enterprise what JNDI does for naming and directory services

and JDBC does for database access. JMS is an API that’s

designed to provide a common facility for enterprise mes-

saging, leaving the underlying implementation of the mes-

saging to whatever application server or other enterprise messaging soft-

ware technology you wish to use. This is an exciting advance for those

involved with the creation or use of message-oriented middleware

(MOM) – and especially for Java developers who need to utilize such facil-

ities within their own products. With JMS you should be able to write one

set of code for messaging against the JMS API and then use it across any

messaging system provider that offers JMS support.

In this article I’ll show you how to create a series of message producers
and consumers that utilize most of the functions of the JMS API – using
persistent topics and queues, creating temporary destinations, filtering
via message selectors, and so on. I’ll implement these examples against
one of the first vendor implementations of JMS, the one provided with the
WebLogic application server from BEA (details on this server and config-
uring JMS are available online in the file “install.txt” at JavaDevelopers-
Journal.com). In this process I’ll take you through the necessary steps to
implement these applications, including the modifications to the appli-
cation server to support the example code you’ll create.

Before you continue with the example code here, I recommend that
you first obtain and install the latest release of the BEA/WebLogic appli-
cation server. You can download a free 30-day trial copy from BEA at
www.weblogic.com.

The Code
Included online are four source files that demonstrate the use of the

two types of messaging in JMS – publish/subscribe and point-to-point.
Sender.java and Receiver.java demonstrate the use of Queues within
JMS for point-to-point communication, and Publisher.java and Sub-
scriber.java demonstrate the use of Topics for publish/subscribe com-
munication. A “readme.txt” file, also online, contains the instructions
for running the various applications and any last-minute information
about the code. Before you attempt to run these applications, make sure
you’ve read the “install.txt” file and made the necessary modifications to
the WebLogic server as indicated. As the sample code also contains
comments and further JMS details that can’t be completely covered in
this article, the reader is encouraged to examine the source code and
run the applications.

USING
THE JAVA
MESSAGE
SERVICE WITH
BEA/WEBLOGIC

USING
THE JAVA
MESSAGE
SERVICE WITH
BEA/WEBLOGIC

A fascinating, powerful

technology for creating

portable messaging

code within your

applications

A fascinating, powerful

technology for creating

portable messaging

code within your

applications

WRITTEN BY SCOTT GRANT

9JANUARY 2000

Java COM

The Java Message Service
The Java Message Service was designed as a set of interfaces that

would be implemented by MOM providers and various other vendors
that wish to support messaging (application server providers, database
server providers, etc.). These interfaces provide a common API for client
applications that wish to implement code that uses messaging against
potentially any given number of underlying messaging systems.

JMS was also designed to be flexible enough to provide this wide sup-
port for existing messaging systems while remaining portable. As a result,
it doesn’t support every possible messaging option from every messaging
system. While you may be familiar with any given MOM product, it’s not
automatic that JMS will support every aspect of that product.

The primary concept in JMS is that of Destinations. A Destination is
nothing more than an association for message producers and message
consumers. Destinations break down into two types, Topics and Queues.
Separate interfaces defined for each Destination type allow a provider to
support one or both, depending on their messaging facility. A Topic is
designed for publish/subscribe messaging, and a Queue is designed for
client-to-client (point-to-point) messaging. Both Destination types sup-
port persistence. JMS also provides support for transactions. Transactions
enable you to support commits or rollbacks on your messaging opera-
tions. Thus, if you have a failure within the boundaries of your transaction,
you can roll back all of the messaging operations that took place within the
boundaries of that transaction. Likewise, if everything completes success-
fully, you can perform a commit on your messaging operations to make
them durable. As JMS Transactions are beyond the scope of this article, I
leave you to investigate that aspect of JMS on your own.

Initializing JMS
CONNECTION FACTORIES

To initialize JMS you use a ConnectionFactory – a tagging interface,
one with no methods, that is extended via either TopicConnectionFacto-
ry or QueueConnectionFactory. A provider implements one or both of
these factory interfaces to provide access to their specific messaging ser-
vice implementation. WebLogic provides generic implementations of
each of the Factory types. The Factories, as well as Topics and Queues,
are considered “administered” objects and as such are created by the
WebLogic server upon start-up (in our case we’re using WebLogic’s JMS
implementation). These administered objects are then retrievable via
JNDI. You use a JNDI naming context to retrieve the administered
objects. Don’t worry if this seems a little confusing – the code examples
will make it easy to understand. You may also create your own Factory
objects in WebLogic instead of using the default Factories; this is done
within the weblogic.properties file. User-defined Factories are discussed
later, in the section on Topics, while the details of defining your own Fac-
tories are contained in the “install.txt” file included online with the arti-
cle source code.

The following code from within the Sender.java example shows how
you initialize JMS and obtain the default ConnectionFactory for Queues
from JNDI:

public final String JMS_FACTORY = "javax.jms.QueueConnectionFactory";

...

queueFx = (QueueConnectionFactory) initCtx.lookup(JMS_FACTORY);

The name of the default ConnectionFactory for Queues is passed in to
the lookup() method of the initial JNDI naming context. A reference to an
implementation of QueueConnectionFactory is then returned to us from
the WebLogic application server (the getInitialContext() method in the
Sender.java sample code that shows the details of initializing JNDI and
obtaining the initial naming context from WebLogic – you can obtain
details on the API from Sun’s Web site at: http://java.sun.com/pro-
ducts/jndi/1.2/javadoc/index.html).

Because ConnectionFactories are administered objects, the WebLogic
application server takes care of creating default ConnectionFactories for
Queues and Topics, as well as any user-defined Factories, and binding
them to names in the WebLogic JNDI implementation for lookup by
client code. Thus the name in JNDI for the default ConnectionFactory
for Queues is “javax.jms.QueueConnectionFactory” and a lookup of this
name through JNDI will return a reference to a default implementation
of this interface, provided by WebLogic. There is a default Connection-
Factory for Topics as well, and it follows the same format;
“javax.jms.TopicConnectionFactory”. A lookup through JNDI will return
you a reference to a default implementation of TopicConnectionFactory,
also provided by WebLogic.

CONNECTIONS
After successful creation of the appropriate ConnectionFactory, the

next step is to create a Connection, an interface defined by JMS that rep-
resents a client connection to the underlying messaging provider. The
ConnectionFactory is responsible for returning a Connection imple-
mentation that can communicate with the underlying messaging sys-
tem. Clients will typically use a single connection. According to the JMS
documentation, the purpose of a Connection is to “encapsulate an open
connection with a JMS provider” and to represent “an open TCP/IP sock-
et between a client and a provider service daemon.” The documentation
also states that the Connection is where client authentication should
take place, and that clients can specify unique identifiers, among other
things. Like ConnectionFactories, Connections come in two flavors,
depending on the Destination type you’re working with: QueueConnec-
tion and TopicConnection both extend the base Connection interface
and you’ll typically work with only one or the other, depending on the
kind of messaging your client is using. The creation of a Connection is
done via the ConnectionFactory. Connection contains two important
methods, start and stop, that start and stop the sending and receiving of
messages on the connection. See the full code block in Listing 1.

SESSIONS
Once you’ve obtained a Connection from the ConnectionFactory, you

must create one or more sessions from the Connection. Session is the
base interface, and again, there are two Destination-specific interfaces
that extend it: QueueSession and TopicSession, which provide Queue- or
Topic-specific Session methods. A Session is a type of factory that pro-
duces message consumers or producers for its Destination type (if it’s a
QueueSession, it creates Queue-oriented consumers and producers; if
it’s a TopicSession, it creates Topic-oriented producers and consumers).
A Session may be transacted or not, and you typically set this by passing
a boolean parameter to the appropriate creation method on the Con-
nection. You also typically pass a parameter to the Connection’s Session
creation method that sets the message acknowledgment mode of the
Session being created – this mode specifies whether the client or the
consumer will acknowledge any messages it receives (this parameter will
be ignored if transactioning is being used). Other methods provided by
Session are various message creation methods that let you create JMS
messages of specific types containing text, bytes, properties or even seri-
alized Java objects (more on the Message interface below). See Figure 1
for a diagram of the actual JMS interface inheritance and creation rela-
tionships – see also the code in Listing 1.

DESTINATIONS
Before you can create any message producers or consumers, you must

have a specific Destination with which to associate any producers or con-
sumers. Remember, Destinations are administered objects, like Connec-
tionFactories. This means that a Destination is maintained by WebLogic
and you must retrieve it through a JNDI lookup. This also means that in this
case the Destination must be defined in advance. This is not to say that
Destinations must always be created in advance. The JMS API provides the
ability to create temporary Destinations that are available only for the life
of the Session that created it as well as permanent Destinations through the
JMS API at runtime. However, in the current WebLogic implementation of

JMS, it should be noted that if you create Destinations via a Session, Desti-
nation will exist only as long as the WebLogic server is running. If the serv-
er crashes or is brought down, the Destination will be gone. The only way
to create a truly persistent Destination is to create it within the
weblogic.properties file (see the “install.txt” file for details on how to do
this). For the purposes of this article, our Destinations are created in
advance, through the weblogic.properties file. Destinations defined in this
file will be created by the WebLogic application server when it starts up, and
will be made available to your client code through JNDI. Listing 1 shows the
code from the Sender.java file, which demonstrates how to create a Queue-
Connection and a QueueSession, and retrieve our own Destination – a
Queue we defined in weblogic.properties named “jdj.article.queue.sender”
– the same as the package hierarchy for the Sender application.

Message Consumers and Message Producers
The final stage of the JMS initialization process is the creation of Mes-

sageConsumers and MessageProducers. Like ConnectionFactory, Con-
nection and Session, these are base interfaces that have Destination-
specific interfaces that extend them for use with either Topics or Queues
(I use the terms Consumer and Producer interchangeably with Message-
Producer and MessageConsumer). MessageConsumers are used to
receive messages sent to a Destination, and MessageProducers are used
to send messages to a Destination. Both are created by a Session
instance. MessageProducer is extended by Destination-specific inter-
faces called QueueSender and TopicPublisher. MessageConsumer is
extended by the interfaces QueueReceiver and TopicSubscriber.

Once you’ve created your MessageConsumer and/or MessageProduc-
er, you have everything in place to begin receiving and/or sending mes-
sages. Since the creation of consumers and producers is specific to either
Queues or Topics, I’ll discuss the process for both types in the relevant
sections below, specific to the Destination type.

Messages
Before I take the final step and begin to delve into the specifics of

sending and receiving from Topics and Queues, we need to discuss one
other interface, Message, which represents the JMS Message itself. This

is the object that contains the information to be sent to a Destination
and received by consumers that are listening on that Destination. Mes-
sages are created by a Session instance, and are composed of three sec-
tions: a header, properties and a body. The header is used to identify and
route the message and the client developer typically doesn’t see or deal
with header information. Properties support application-specific values
passed with a message. These property fields are predefined; a full
description of them is available in the JMS Documentation. I use a few of
these properties within the sample code. The body section of the mes-
sage is the actual “payload” of the message and can be of five types rep-
resented by five specific interfaces: StreamMessage, MapMessage,
ObjectMessage, TextMessage and BytesMessage (see Figure 1).

Persistence
JMS has an additional important aspect worth discussing: it supports

persistent delivery of messages. Quite simply, this means that if a Con-
sumer isn’t running or is unavailable when a message is sent to a Desti-
nation, the message will be held until the next time that Consumer con-
nects to the Destination. If you have five applications listening on a sin-
gle Topic, for instance, and one of them should crash, the next time that
application starts and connects to that specific Topic, any messages sent
to that Topic while the application was down will be delivered to the
application when it begins listening again. If this seems difficult to fol-
low, it’ll make more sense when you run the sample code.

Queues
A Queue is designed for “point-to-point” or “one-to-one” message

delivery. This means that a Queue should have only one client sending
messages to it, and only one application consuming messages from that
Queue. In reality, you can have multiple clients sending to a Queue, but
you should never have more than one application consuming messages
from that Queue. If you have more than one Consumer on a Queue,
there’s no guarantee about which Consumer will receive the message,
but it’ll only be one. If you need multiple Consumers on a Destination
and would like all of them to receive the same message, you should use
a Topic (see the following page).

FIGURE 1 Inheritance and creation relationships between the various JMS interfaces, including input and output points for messages

Java COM

10 JANUARY 2000

Connection

TopicConnectionFactory

QueueConnectionFactory

SessionCreates one or
more Sessions

Messages are sent to
Destinations (Topic/Queue)

and routed to
MessageConsumers

Sessions Create
Message instances

Each Session type
creates one or
more Producers
and/or Consumers

ConnectionFactory

Queue

Inheritance (Extends)
Creation
Incoming/Outgoing Messages

Destination

TopicConnection
Creates

Creates QueueConnection

TopicSession

QueueSession

MessageProducer

TopicPublisher

Send
messages
to Topic

Send
messages
to QueueQueueSender

TopicSubscriber
Receive

messages
from Topic

Receive
messages

from Queue

QueueReceiver

MessageConsumer

Topic

Message StreamMessage

MapMessage

ObjectMessage

BytesMessage

TextMessage

LEGEND

11JANUARY 2000

Java COM

Segue
www.segue.com/ads/corba

Java COM

12 JANUARY 2000

The Sender.java and Receiver.java files contain the code that shows
how to use a Queue. The code demonstrates the initialization process for
JMS and retrieval of our predefined Queue, and how to create both a
MessageProducer and a MessageConsumer for sending and receiving
messages on the Queue.

There are two specific interfaces for consuming and producing mes-
sages on a Queue. QueueSender, which is returned from a QueueSession
via a call to one of the createQueueSender() methods of the QueueSes-
sion, is used to send messages to the Queue. QueueReceiver, which is
returned from a QueueSession via a call to one of the createQueueRe-
ceiver() methods of the QueueSession, is used to receive messages from
the Queue.

Listing 2 is the code from the sendMsg method of Sender.java that
shows how you create a MessageProducer from your Session, then con-
struct a TextMessage and send it. In this code we’re creating a Queue-
Sender, then creating a TextMessage with text retrieved from a TextField
in the UI of the application. We then use the QueueSender method
“send” to deliver the message.

There are two ways to handle the receipt of incoming messages on a
MessageConsumer – synchronous and asynchronous. The first step is to
create the MessageConsumer itself; the next is to decide whether you
want synchronous or asynchronous message delivery on the Consumer.
After you create a MessageConsumer from your Session, if you want to
synchronously receive the next message produced for the Destination,
you can call the receive method on your MessageConsumer – this
method takes no parameters and will block until the next Message is
received, which it will return to the caller. For asynchronous message
receipt, you register an implementation of the MessageListener interface
with your MessageConsumer. This goes for both Topics and Queues.
MessageListener has one method that you must implement, onMessage,
which receives one parameter, a Message. This method will be called on
your implementation of onMessage for every message delivered to the
Destination. This is demonstrated in the implementation of onMessage
in both Sender.java and Receiver.java. In Receiver.java we have the fol-
lowing code in the initializeJMS method, which creates the Message-
Consumer (a QueueReceiver) and sets the implementation of Message-
Listener:

// Create a Receiver for the Queue...

receiver = session.createReceiver(queue);

// Set the listener (this class)

receiver.setMessageListener(this);

Once the Connection’s “start” method is called, messages will begin to
come in to the Consumer as they arrive at the Destination.

REPLYTO – USING TEMPORARY QUEUES
You’ll also notice that both Sender.java and Receiver.java implement

MessageConsumers and MessageProducers. Each implements Message-
Listener. This demonstrates one of the interesting features of JMS, that
is, the use of temporary Destinations. An application that wishes to
receive responses to the messages it produces can create a temporary
Queue or Topic and pass this Destination in the Message it sends. One of
the properties of Message is the JMSReplyTo property. This property is
intended to be used for this purpose. You can create a temporary Queue
or Topic and place it into the JMSReplyTo property of the Message. Con-
sumers who receive this message have a private, temporary Destination
that they can use to respond to the sender. This is demonstrated by two
methods, one in each of the files. In Sender.java we have the following
sections of code, which create the temporary Queue and place it in the
JMSReplyTo property of the TextMessage:

// Create a temporary queue for replies...

tempQueue = (Queue) session.createTemporaryQueue();

The line of code above is found in the initializeJMS method of

Sender.java. This code creates a temporary Queue on application start-
up that will exist for the lifetime of the application. The next line of code,
found in the sendMsg method of Sender.java, shows how to set the
JMSReplyTo property to contain the temporary Queue.

// Set ReplyTo to temporary queue...

msg.setJMSReplyTo(tempQueue);

When this message is received by the QueueReceiver of Re-
ceiver.java, the temporary Queue is extracted from the JMSReplyTo
field, and a QueueSender is constructed by the application to send a
response message back to Sender.java. This demonstrates how to use
the properties of a JMS Message and shows the usefulness of a private,
temporary Destination. It also demonstrates how clients can be both
Producers and Consumers of messages. The following code from
Receiver.java demonstrates how to handle the extraction of the tempo-
rary Queue from the JMS Message; this code is found in the onMessage
method:

// Get the temporary queue from the JMSReplyTo

// property of the message...

tempQueue = (Queue) msg.getJMSReplyTo();

The following block from the sendReplyToMsg method shows how to
create a QueueSender and send the reply:

// create a Sender for the temporary queue

if (sender == null)

sender = session.createSender(tempQueue);

TextMessage msg = session.createTextMessage();

msg.setText(REPLYTO_TEXT);

...

// Send the message to the temporary queue...

sender.send(msg);

Topics
A Topic is designed to implement a “publish/subscribe” message

delivery mechanism. Whereas Queues are designed to have one Produc-
er and one Consumer, a Topic is designed to allow multiple Producers to
send messages to it, and to have multiple Consumers receiving delivery
of the same Message from the Topic. A Topic is a “many-to-many” model.
The creation process for MessageProducers and MessageConsumers of a
Topic is similar to that of a Queue. You use your Session to create the
TopicPublishers and TopicSubscribers. These mirror the QueueSender
and QueueReceiver in that each provides Topic-specific capabilities and
implements the base MessageProducer and MessageConsumer inter-
faces.

The creation process for a TopicPublisher is nearly identical to that of
the QueueSender. Following is the code from the sendMsg method of
Publisher.java that shows the creation of a TopicPublisher and how to
publish the message to the Topic:

// create a Publisher if there isn't one...

if (publisher == null)

publisher = session.createPublisher(topic);

TextMessage msg = session.createTextMessage();

msg.setText(text);

...

// Publish it to the topic...

publisher.publish(msg);

13JANUARY 2000

Java COM

IBM
ibm.com/developerworks

Java COM

14 JANUARY 2000

DURABLE SUBSCRIBERS
One of the interesting aspects of TopicSubscribers is that it is a durable

subscriber – a unique name provided by a client that identifies it within a
Session. A Session, in turn, has a Client ID associated with it, defined either
at runtime through a method call on the Connection or as part of the
administered ConnectionFactory (in our case it’s defined in this way with-
in the weblogic.properties file). Thus a Connection provides a Session with
a Client ID, and durable subscriber names are unique identifiers within
Sessions, associated with a specific Client ID. The purpose of durable sub-
scribers is to create unique, persistent Consumers for a given Topic.

An application that creates a TopicSubscriber via a call to the create-
DurableSubscriber method of a TopicSession must pass in a durable sub-
scriber name (a string) as one of its parameters; for instance, you could
set the durable subscriber name to the name of the user currently logged
into the application, and so on. This name will uniquely identify a partic-
ular subscriber to a Topic (in conjunction with a unique Client ID for the
Connection/Session). Once this durable subscriber has registered with
the Topic, the Topic will persistently ensure delivery of messages to that
subscriber. This means that if a particular durable subscriber is unavail-
able, messages will be held until the next time that durable subscriber
(with the same unique, durable subscriber name and Client ID) registers
as a Consumer. The Subscriber.java file demonstrates the creation of
durable subscribers and allows you to use a default subscriber name or to
set this identifier from the command line (see the “readme.txt” file for fur-
ther details on running the application and demonstrating the message
persistence with durable subscribers). The following code fragment from
the initializeJMS method of Subscriber.java shows how to create a
durable subscriber from your TopicSession:

subscriber = session.createDurableSubscriber(

topic,

subscriberID,

SELECTOR,

false);

// Set the listener (this class)

subscriber.setMessageListener(this);

TopicSubscribers that aren’t created as durable subscribers won’t
receive messages persistently, and will receive them only while
they’re running. For further details on durable subscribers, and Top-
ics in general, please see Sun’s JMS documentation. One other item
about the preceding code: note that the third parameter passed to
the method is SELECTOR. This is where message selectors are asso-
ciated with a Consumer (see below for details on message selectors).

FILTERING – USING MESSAGE SELECTORS
The final area of JMS I’ll touch on is the message selector – a filter applied

to MessageConsumers that can act on the properties and header sections
of incoming messages (but not on the body of the message) and determine
whether the message is actually to be consumed. Message selectors are
strings, and are based on a syntax that is a subset of SQL-92, according to
the JMS documentation. You can apply message selectors as part of the cre-
ation of a MessageConsumer. The way these selectors are applied to
incoming messages differs slightly based on whether the MessageCon-
sumer is a QueueReceiver or a TopicSubscriber. I encourage you to exam-
ine the syntax of message collectors, and how they can be applied, by
examining the Subscriber.java file and running the Publisher and Sub-
scriber applications. The following section of code defines our message
selector in Subscriber.java, and the application itself lets you change the
selector from a text field:

public final String SELECTOR = "JMSType = 'TOPIC_PUBLISHER'";

This selector examines the JMSType property of the incoming message
from our Topic and determines whether the value is equal to
TOPIC_PUBLISHER. If it is, the message is passed to our MessageListen-
er implementation; if it isn’t, the message is ignored. See the “readme.txt”
file for details on running the applications and demonstrating this behav-
ior. I also encourage you to check out Sun’s JMS documentation.

Summary
JMS is a fascinating and powerful technology for creating portable mes-

saging code within your applications. It allows for both “point-to-point”
and “publish/subscribe” message delivery, and also supports transactions
and persistence. The WebLogic application server from BEA offers a robust
and complete implementation of JMS that works in conjunction with the
other technology provided by the application server, such as EJBs and
servlets. This creates interesting potential for persistent, asynchronous
messaging with transactioning support between various enterprise
objects and services. It is my hope that this article will encourage you to
explore the online sample code in conjunction with the article text, and to
examine the possibilities that WebLogic, and JMS in particular, offers.

AUTHOR BIO
Scott Grant, a director of development at Rapid Logic, Inc., and a Sun-certified Java developer, has 14 years
of diversified engineering experience. He was the chief architect and lead developer of Rapid Logic’s Rapid-
Control for Applets product and currently leads the development of their enterprise technology products.

public final String JMS_FACTORY =
"javax.jms.QueueConnectionFactory";
public final String QUEUE = "jdj.arti-
cle.queue.sender";
...
private void initializeJMS(boolean
transacted)
{
try

{
if (initCtx != null)
{
// Look up the default QueueCon-
// nectionFactory...
queueFx = (QueueConnectionFactory)

initCtx.lookup(JMS_FACTORY);

// Create a QueueConnection from
// the Connection Factory...
conn = queueFx.createQueueConnec-
tion();

// Create a QueueSession from the

// QueueConnection. The first
// parameter is a boolean that
// specifies transacted or not
// transacted. The second param
// specifies that our Session will
// automatically Acknowledge a
// client’s receipt of a message.
session = conn.createQueueSes-
sion(transacted,

Session.AUTO_ACKNOWLEDGE);

// Look up the Destination we want
// to use for our Consumers and
// Producers for this session. In
// this case a Queue called
// "jdj.article.queue.sender".
queue = (Queue) initCtx.lookup(QUEUE);

...
}

}
...

}

// create a Sender
if (sender == null)

sender = session.createSender(queue);

TextMessage msg = session.createTextMessage();
msg.setText(text);

// Override default, to insure it's
// using persistent delivery...
msg.setJMSDeliveryMode(DeliveryMode.PER-
SISTENT);

// Set ReplyTo to temporary queue...
msg.setJMSReplyTo(tempQueue);

// Send the message...
sender.send(msg);

Listing 2Listing 1

scottg2@home.com

15JANUARY 2000

Java COM

KL Group
“Profiling w/

JPrbobe Profiles”
www.klgroup.com/performance

Java COM

16 JANUARY 2000

WRITTEN BY
ALAN WILLIAMSON

Money. . .The Root of All Evil

W
hen all is said and done, I hope you’re reading this column
– the first in the new millennium – in familiar surround-
ings.With any luck, the prophets of doom around the Y2K
problem have been proved wrong and the world didn’t
stop spinning suddenly in a haze of apocalyptic fireworks.
If this is the case, I congratulate the human race for mak-
ing it past another one of life’s man-made hurdles.

S T R A I G H T T A L K I N G

That’s not to say that all our systems
have made it smoothly into the new age.
Who knows what state the world’s IT
systems will be in? I’m thinking it’s not
going to be quite as bad as predicted.
There’ll be glitches, of course, some
anomalies, but on the whole I think the
risk to human life has been grossly exag-
gerated. That said, I’d like to take some
time now for reflection.

Now that the world’s clocks have
rolled over to 2000, we’ve lost a species
that flurried so well in the run-up,
including 1999. I don’t think it’s a major
loss, and I’m sure Mother Nature will
make the balance sheets tally up. These
parasites preyed on unsuspecting vic-
tims, latching onto their IT budgets and,
like all good blood-sucking insects,
bleeding their victim dry before moving
onto the next one, with the previous
body feeling dazed and dizzy trying to
figure out exactly what happened.

Who am I talking about? The so-
called Y2K companies that
popped up, charging astro-
nomical rates to tell the
end client that they
should prepare for the
turn of the century.
Not many of them
could actually offer
any more than the
warning – a 40-page
report detailing the joys
the change from 1999 to
2000 would bring to
your company. And
boy, was that an expen-
sive report to commis-
sion! These companies
were generally one-man
bands run very much
like a cult (minus
the sex, I assume). They
roamed the land looking for
unsuspecting, worried, stressed IT
directors who, come January 1, 2000,

would have to report to their board of
directors on what steps they took to
sidestep the Y2K issue. An easy kill,
methinks.

I’m talking about some real cowboys
here. I’m aware of many companies of
this ilk – companies that don’t have even
one computing qualification among
them. In fact, I know of one British com-
pany that made a fortune reselling the
free computer disk from our govern-
ment for £25. But, you say, they must
have added extra value to the disk to
warrant the price increase from £0 to
£25. Well, yes, they did, so I must apolo-
gize for not telling you the whole story:
they added the company’s sticker – with
logo prominently beaming. With print-
ing costs like that, maybe we’re all in the
wrong game!

Nugget from Vienna
I’ve just come back from the Java

Migration Conference in Vienna,
where IBM was our host for four
days. As with many of these confer-

ences, the majority of it was the
same old nonsense, but you

don’t go for that. You go for the
odd golden nugget that pops

its head up – and a number of
nuggets did indeed show them-

selves. One such came
from Big Blue them-

selves in the form of
Oma Sewhdat. Oma
is in charge of the Java

certification program
that IBM is spearhead-

ing. It was one of those
talks that surprised me. I
sat down, mentally pre-

paring myself to shut down
and sleep, with my eyes open, for

the next hour. But what I heard caught
my attention, and suddenly all my
processes were up and running again.

Oma began by outlining the need for
Java certification, and I must say I was
impressed by the philosophy that went
into this. IBM’s biggest concern is the
lack of skilled individuals that can actu-
ally do the job at hand. Oma talked of
spiraling salaries and the problems
employers face with retaining good staff.
As regular readers of this column will
recall, I’ve had a number of things to say
on this issue myself, as we have to go
through the process of hiring and are
only too painfully aware of how hard it is
to get good people.

But one of the things he said got me
thinking. If the likes of IBM, Sun and
Oracle are starting to think what we
have known for years, then maybe it’s
time for the industry at large to wake up
to themselves. We’re heading for disaster
if we continue on the trajectory we’re on
now. If salaries continue to rise out of
control, with Java developers becoming
elitist and unaffordable, where do you
think we’ll end up? That’s an easy ques-
tion to answer: Java simply won’t be
deployed. A much more flexible and
affordable solution will evolve to take its
place. I believe this is one of the reasons
for the popularity of Visual Basic. It was-
n’t rocket science and not at all difficult.
Thus, finding good skilled people for it
wasn’t a problem and, more important,
wasn’t expensive. Whatever we, as devel-
opers, may think of Visual Basic isn’t the
point of the argument. The point is that
Visual Basic was a quick route of devel-
opment for companies that needed
solutions fast and cost effectively.

If we’re not careful, Java will become
too expensive for companies to consider
seriously. We’re seeing this at the
moment. Anyone tried hiring EJB devel-
opers? Sign a blank check and pray that
no one comes along and head-hunts
him or her. This will hopefully settle as
more and more developers come up to
speed with the new technology, but as

JD

17JANUARY 2000

Java COM

Persistance
www.persistence.com

Java COM

18 JANUARY 2000

far as I’m concerned, for the time being
anyway, silly money is being paid for
these developers.

I’m one of the ones who wants to see
the quality of development go up. At the
moment, we as an industry are produc-
ing second-rate code. The only industry
that’s producing cutting-edge develop-
ment is the games industry. Why?
Because in this world the end users sim-
ply won’t tolerate slow gameplay.
They’re constantly asking for more and
more, with the average gamer not in a
position to upgrade his or her machine
every time a new game hits the shelves.
In the corporate world the same pres-
sure simply doesn’t exist. Now don’t get
me wrong. I’m not saying that everyone
is producing second-rate code. Let’s just
sidestep that flood of hate e-mail. I’m
talking as a whole, and the sad fact is
that the number of poor developers out-
numbers the real hot developers.

Why is this? Well, I’m sure there are
many reasons. My personal view is that
we have too many people thinking
they’re programmers when in actual fact
they have no clue. We’ve had this debate
before in this column, which spawned a
wonderful flurry of traffic on the mailing
list. Many of you shared this opinion, or
at least some of it. But the reason I’m
bringing it up again is the thoughts I
gleaned from this conference in Vienna.
In speaking to Oma and a number of
other key speakers, I found that the gen-
eral thinking was that the quality is poor
and that to secure Java longevity some-
thing has to be done.

Maybe we need more education.
Teach Java at university? On the face of it
this sounds like a wonderful idea. In
practice, however, it doesn’t quite work.
I don’t rate “Academic Java” very high. I
haven’t seen one example of someone
being taught Java at university and com-
ing out being able to do a day’s work.
Alas, I can’t take credit for the term Aca-
demic Java; it was used at the confer-
ence by a number of key speakers who
were expressing their distrust of this lat-
est training bandwagon. I think the
problem is that in many instances we
have the blind leading the blind. The
lecturers don’t have the slightest idea
how Java is being used in industry, and
therefore all the skills that should be
taught are glossed over.

We have a number of developers here
at n-ary who got their Java skills from
academia. Even they say it was a waste
of time, and the Java they did then
comes nowhere near the real-world
Java. So why the big discrepancy? I don’t
know the answer to that one. But I’m
asking all around me about their
thoughts and I’m learning lots about
how others feel. Let me know what you
feel.

Mailing List
Come and join our mailing list and

discuss what you feel about the state of
Java code as a whole. If you want to be
part of the discussion, send an e-mail to
listserv@listserv.n-ary.com with sub-
scribe straight_talking-l in the body of

the text. From there you’ll get instruc-
tions on how to participate on the list.
Thank you all for your continued posts,
and I have to say that I thoroughly enjoy
the variety of topics discussed.

Members of this mailing list were let
in on something new we tried. You read
the column, you even join in the discus-
sions on the mailing list. Well, now you
can listen to a daily radio show. Yes, the
Straight Talking column has gone radio.
I and my esteemed colleague and
cohost, Keith Douglas, host a 10–15
minute show once a day based on the
ramblings of the mailing list. It’s a mix of
Java talk, music and general banter. So if
you’re bored, come and listen to us.
Check out http://radio.sys-con.com/
for more details. Again, let me know
what you think. I’d love to hear your
thoughts.

Salute of the Month
This month’s salute goes to one of the

main men at the heart of producing the
Java Virtual Machine for the AS/400.
This man was introduced to us at the
Vienna conference and he bears a
spooky resemblance to one Jim Driscoll
from Sun Microsystems. (Jim, if you’re
reading this, I think I’ve found your dou-
ble!) Blair Wyman, the gentleman in
question, gave an absolutely excellent
speech that not only entertained but
also educated us in the ways of the JNI
interface. Blair describes himself as one
of the backroom boys who doesn’t get
out that often. I think this is truly a

S T R A I G H T T A L K I N G

JAVA MIGRATION CONFERENCE SHOW REPORT

I
BM Vienna played host to this year’s Java Migration Con-
ference. The conference was packed with wall-to-wall
talks aimed at the developer looking toward Java or the
manager looking to move his or her department or sys-
tems to Java.

Fortunately for the delegates, IBM did little product pushing and concen-
trated mostly on the overall benefits a Java solution has to offer. That’s not
to say there was no discussion on WebSphere and San Francisco, but on the

whole this was limited to sim-
ple infomercials. It wasn’t a

trade show. You were there
to listen to speakers talk
on a vast array of topics
ranging from basic Java

language skills right through
to deploying a general EJB
application.
The conference focused pri-

marily on selling Java for the
server side. Thus technologies such

as Servlets and Enterprise JavaBeans featured
strongly in the majority of presentations. Presentations from some of the

smaller companies and vendors came as one of the refreshing changes.
Many of these representatives weren’t afraid to tell it like it is, with lots of
interesting hints and warnings regarding some of the more popular devel-
opment tools.

The conference opened with a look at certification and the inroads the
major players are making to raise the standard of Java. Oma Sewhdat,
who heads up IBM’s certification program, discussed the logistics of
acquiring the necessary qualifications. He took us through some of the
early backroom politics to the current stage in which a coherent and log-
ical training program is now in place. According to Sewhdat, once every-
one was around the table, discussions went smoothly and all the compa-
nies wanted to see developers with greater skills. However, things got ugly
when it came to naming the beast and who’s branding would go where.
We were told that this intercompany squabbling is ongoing, with a name
for the new wave of training still pending. However, it’s exciting and
extremely worthwhile for both employees and employers. So watch this
space.

A number of video conferences took place. Rational’s Grady Booch, for
instance, took us through the joys of designing for a large-scale applica-
tion system. It was a good overview – one of those presentations that left
the delegates asking questions as opposed to answering. Grady managed
to convey enough information to allow us to think that little bit further into
the future when we design our Web-based applications. Another excellent

19JANUARY 2000

Java COM

NuMega
www.compuware.com/numega

shame, as I for one believe Blair is one of
IBM’s best-kept secrets. I’d never met a
real live IBM’er – well, at least not with-
out a press agent in attendance, censor-
ing his or her every word, so it was a real
breath of fresh air to meet Oma and
Blair. One term Blair introduced me to
was the notion of Big Iron, which is used
to describe large servers. I thought this
rather sweet.

The Cool Way to Travel
As you all know, I’m experiencing a

country revival with all these Dixie Chicks
and Dolly Parton CDs floating around.
You’ll be pleased to know that I think this
is beginning to subside. I can’t be sure yet,
but I’ll keep you posted on the status. I’ve
been doing a bit of traveling lately and I
have to say that MP3 has been keeping me

company throughout my travels. It’s kinda
cool to travel with over 40 CDs on your
portable. Anyone who’s experienced this
world knows only too well what I mean.

I’d better go now. I’m on a fitness
drive, to get the body beautiful. Let me
tell you, it’s a long haul. Right. I’m off for
a swim now….

Java COM

20 JANUARY 2000

AUTHOR BIO
Alan Williamson is CEO
of n-ary (consulting) Ltd,

the first pure Java
company in the United

Kingdom.The firm, which
specializes solely in Java

at the server side, has
offices in Scotland,

England and Australia.
Alan is the author of two

Java servlet books, and
contributed to the Servlet
API. He has a Web site at

www.n-ary.com.

overview of the whole Java arena came from Rick Ross of Activated. Rick
is also president of the Java Lobby, and as usual conveyed exactly what
many of us feel about the politics of our Java world. One of the more con-
troversial points he raised was the ownership of Java. Rick pointed to an
alliance between IBM and Sun rather than just allowing Sun full control.
This is an interesting view and one that I’m sure was discussed over many
a dinner table the following evening.

Speaking of dinner tables, our conference organizer, Susan Brunner,
had a nice surprise for the delegates one night. Susan had arranged for
one of Austria’s finest wine producers, Willi Opitz, to come and treat us to
a wine-tasting ceremony. He brought a range of his products for us all to
swirl and spit. It has to be said that not all of us spat it out! Willi took us
through a number of hints and tips on what to look for in a good wine and
it was a refreshing break from the world of Java. The night ended with
each delegate picking up a free bottle of wine after enjoying a meal at the
revolving restaurant in the Danube tower. Willi was kind enough to grant
SYS-CON Radio an interview and we managed to get some of his tips for
us all to enjoy.

As is true of all conferences, some of the speakers are really boring.
I’m sure you’ve all sat through a presentation at some point where the
very will to live slowly seeps away. The names of these people shall

remain anonymous. A name that won’t, however, is that of one Blair
Wyman from IBM Rochester. Blair was one of the main developers behind
porting the virtual machine to the AS/400. Blair had three sessions, each
one more entertaining than the one before. His presentations were not
only informative and insightful but bloody damn funny to boot. The virtual
machine is one piece of software we all take for granted, but Blair took us
through some of the headaches he’s had to face in order for us to rest
safely in our beds.

SYS-CON Radio was there in full force with complete audio coverage. I
and my esteemed Straight Talking Radio half, Keith Douglas, interviewed
many of the conference speakers, including a number for our own
Straight Talking shows. For full details be sure to visit the Web site at
http://radio.sys-con.com/.

The conference was held at IBM’s main office in Vienna, which provid-
ed an excellent venue for networking and making new friends. There was
a rich tapestry of backgrounds, and the opportunity to mingle and intro-
duce yourself presented itself many times. This conference had much to
offer, assuming you were bold enough to ask the questions you needed
answering.

Big Blue excelled here, and definitely came across as the developer’s
friend. We look forward to the next one.

alan@sys-con.com

S T R A I G H T T A L K I N G

QuickStream
www.quickstream.com

21JANUARY 2000

Java COM

Software
AG

www.softwareag.com/bolero

Java COM

22 JANUARY 2000

J D J F E A T U R E

D
espite recent high-profile attacks, application

developers often consider security some-

thing to tack on at the end of a project, and

history encourages this approach. It’s unusu-

al to see security considered a fundamental

design element in a programming language.

But here’s where the Java 2 platform deviates radically

from the norm – security is in fact a crucial design goal,

interwoven into the language’s core bootstrap mechanisms.

Even before a virtual machine loads its first class, it’s aware

of specific security policies and permissions.

Unfortunately, security policies are one of Java’s more

confusing elements. Many developers find them outright

irritating. To make matters worse, a great deal of printed and

online tutorial code – even from official sources – circum-

vents security features by granting all permissions to all

code. Usually there’s some sort of caveat that these sample

policies shouldn’t be used in real-world applications. This

isn’t particularly helpful; real-world policy examples remain

scarce, and too many applications remain dangerous.

This article exposes Java’s treatment of core security. I’ll

cover how the model operates throughout a class’s lifecycle,

its internal logic and how it can be extended for smarter code.

J2SECU
RITY

PERM
ISSION

WRITTEN BY PATRICK SEAN NEVILLE

23JANUARY 2000

Java COM

Background: Security Fundamentals
Computer science served as a catalyst in the

evolution of burglary. All the traditional attacks
hold true here but have mutated to fit a new
context.

Secrecy attacks represent the most familiar
security challenge. Examples include a thief who
cracks a mail server and steals messages, and a
snoop who records an online shopper’s SSL ses-
sion and eventually recovers the cryptographic
key that can decrypt it. It could also include
bribing or tricking someone into divulging a
password (social engineering and “rubber hose”
techniques).

Integrity attacks involve the altering of data.
Culprits include an attacker who successfully
alters records in a database or intercepts a mes-
sage from a server and replaces it with a new
message before a client receives it – a “man-in-
the-middle” attack.

“Trojan Horse” or “Trojaned” applications
represent a special case of integrity attacks.
Named after the device that sealed the fate of
Troy, these attacks occur when a person replaces
an existing application with a new version or
adds some malicious code to a familiar applica-
tion. Imagine, for example, a scenario in which
an attacker replaces your Web browser with a
nearly identical browser that secretly sends all
your credit card information to some hidden
server.

Not all burglaries are committed artfully;
some are brute-force muggings. The computer
equivalent of a mugging is a “denial-of-service”
attack, an attempt to render a server or network
unusable. For example, an attacker might flood a
Web server with a tremendous number of
requests. While attempting to manage this load,
the attacked machine or network might be
unable to respond to any requests at all, possibly
failing altogether and shutting down.

It’s worth noting that people don’t challenge
computer security. Crackers (those who tres-
pass on computer systems) and phreakers
(eavesdroppers who monitor telecom network
transmissions) get the press, but it’s their tools
– that is, code – that do the work and, as appli-
cation developers, we’re concerned with code.
Of course, malicious code doesn’t come from
attackers only; it could amount to poorly writ-
ten apps that inadvertently compromise sys-
tem-level resources or hinder the performance
of other apps.

Malicious code also includes viruses. Though
true viruses are traditionally assembly-lan-
guage, low-level programs, most modern
“viruses” are actually mere macroscripts that
function only in specific operating systems or
applications. Depending on the effects of a
virus, it may result in a secrecy attack, integrity
attack or denial-of-service attack. The virus
may be delivered through a Trojaned applica-
tion or Trojaned e-mail message. The fact that
viruses rarely victimize Java applications is due
to the language’s insistence on a firm policy and
permission design.

Java-Centric Security Concerns
Just as Java introduces new approaches to

computing, it also introduces new spins on tra-
ditional security problems. How do we ensure
that an object marshaled across an RMI system
isn’t victimized by a man-in-the-middle attack?
How do we defend a portable Jini-enabled
device from a denial-of-service attack? Java’s
security APIs are designed to be extended to
address such issues.

There are many pieces to the Java security puz-
zle spread across several API subsets. First and
foremost is the core security package that con-
sists of classes in the java.security and java.lang
packages. All Java applications, including Enter-
prise JavaBeans, Swing clients and Web applets,
are affected by this core architecture. Regardless
of whether you delve into cryptography or
authentication APIs, and regardless of the scale of
your application, the core Policy and Permissions
model will affect your Java 2 project even if you
stubbornly insist on ignoring security.

The Policy and Permissions model addresses
integrity attacks and, to a lesser degree, denial-
of-service and secrecy attacks. The reason the
model touches on all these attack categories is
that it’s built on a security truism: the only
secure application is one that doesn’t run at all.
The core security model deals with which
applications are capable of running and in
what manner they’re permitted to function.

Since application developers are personally
required to deal with the security model, risky
applications can rarely be developed unwit-
tingly. If a method includes a known security
risk, it simply won’t execute unless some devel-
oper acknowledges the risk and specifically
grants a permission.

Policy-Based, Permission-Driven Architecture
Generally speaking, a Permission is simply a

statement that some “thing” can execute a par-
ticular “action” on a particular “target.” This
notion is common to most multiuser operating
systems and platforms: a user (the thing) may
have Permission to access a particular file (the
target) and read it (the action). Java sticks fairly
closely to this definition.

Here’s the architecture in a nutshell: specific
code (described by a CodeSource) can perform
certain actions on certain targets (described by
a Permission). Policy objects manage the rela-
tionships between CodeSource objects and
Permission objects (see Figure 1).

Permissions concern classes, not objects.
They deal with what a piece of code is allowed
to do regardless of its instantiations and who’s
executing it. To make matters even simpler,
Permissions are always positive – they never
deny actions, only grant them.

The relationship between CodeSource and
Permissions is encapsulated in a policy and
available before any application logic is even
considered by a virtual machine. Consider an
object’s lifecycle (see Figure 2).

Java
introduces
new spins
on
traditional
security
problems

Java
introduces
new spins
on
traditional
security
problems

Java COM

24 JANUARY 2000

When an object is instantiated, its class must be defined first. Based
on the class’s CodeSource, it’s then linked to a set of Permissions that a
policy has prepared for it. The virtual machine is aware of how to con-
struct this policy upon start-up (more on this later). Finally, an instance
of the class is created.

When that instance is subsequently acted on through method invoca-
tions, a SecurityManager may check its Permissions at runtime, throw-
ing AccessControlExceptions if any class in the stack of executions lacks
the necessary Permissions.

This is simplifying things a little. Behind the scene, matters are a bit more
complex. For instance, the ClassLoader will elegantly group Permissions in
ProtectionDomains and associate a loaded class with a ProtectionDomain
instead of directly to a PermissionsCollection. Furthermore, you probably
recognize that ClassLoaders are themselves classes loaded by other Class-
Loaders. In fact, there’s a chain of ClassLoaders leading backwards up a
hierarchy that begins at the virtual machine’s special, primordial, native
ClassLoader, which is completely inaccessible (it’s returned as null). And
we haven’t even mentioned the complexities of checking every class in an
execution stack for the proper Permissions at runtime.

As application developers, we usually don’t need to concern ourselves
with these details. Of more importance, everything in the model is
extendable, so we can create custom Permissions, require security
checks wherever we like in application code and craft custom policy
objects. Moreover, we can easily create different policies for different
users, altering end-user functionality without touching the source code
itself and without tangling with the SecurityManager.

Cracking Open the Policy Matrix: CodeSource and Permissions
Policy is fairly simple. It links code to Permissions in a more or less

key=value format. Its contents, however, are worthy of a closer look.
CodeSource, defined in java.security.CodeSource, identifies class files

for security purposes. Don’t confuse it with codebase, the property used
to describe the root location of an applet or application.

CodeSource characterizes classes by location and by the identity of
their creator or deployer. The first trait is straightforward – we refer to
location using either file or HTTP protocol. The second characteristic is
a little trickier. Java code collected in a JAR file can be cryptographically
signed by a specific identity. This process allows a virtual machine to ver-
ify the application’s integrity.

Here’s an example: imagine that Alice has created an application and
distributed it in the archive “code.jar”. Bob downloads code.jar and
wants to grant special Permissions to it. But he wants to be sure no one
has tampered with or Trojaned the code.jar file, so he doesn’t grant Per-
missions to any file named code.jar but only to code.jar archives that
Alice has signed. The authentication mechanism runs behind the
scenes, using KeyStores. A good resource for information on signing
code and the nature of digital signatures is Java Cryptography by
Jonathan Knudsen.

While CodeSource is defined by only two characteristics, Permission
objects offer hierarchical variety. The abstract top-level permission
object, java.security.Permission, introduces the notion of a target and a
series of actions. Its subclasses are AllPermission, FilePermission, Sock-
etPermission and BasicPermission. BasicPermission in turn has a num-
ber of subclasses, most of which have no “actions” associated with them.

When you’re creating your own Permission objects, you’re free to sub-
class either Permission or BasicPermission. Use of AllPermission should
be avoided even for testing code. As its name suggests, AllPermission
passes all security checks. Instead of using AllPermission, try assigning
your code the specific Permissions it needs from the outset.

A Permission’s type will relate to the general function it addresses –
FilePermission objects relate to file I/O functions. The possible targets
associated with a Permission should follow reasonably from the type – a
FilePermission will have targets that are files. The actions will in turn fol-
low reasonably from the target, so a FilePermission might provide
actions of “read” or “write” on a particular file target.

A word about actions – not all Permissions have them. In fact, most of
BasicPermission’s subclasses don’t use them. RuntimePermission, for
example, lists a number of possible targets but no actions at all. The tar-
gets themselves, however, imply an action. For example, the Run-
timePermission target “createClassLoader” implies a target of “Class-
Loader” with an action of “create.” Since there’s only one possible action,
it’s included in the target as a sort of shorthand. This seemingly arbitrary
inclusion and exclusion of targets and actions doesn’t exactly make Per-
mission usage intuitive. Until you become accustomed to the specific
Permissions, refer to the APIs for guidance (a good reference is
http://java.sun.com/products/jdk/1.2/docs/guide/security/Permis-
sions.html).

Mastering Policy Files
In the default Java 2 implementation you should store policy informa-

tion in the same text files in which the VM instantiates policy objects.
If you’re interested in creating a new security provider, you could craft

an implementation that stores the policy data in a database, a smart card
or even an Enterprise JavaBean. For the purposes of this discussion I’ll
focus on the existing flat file implementation provided by Sun.

Out of the box, Java uses one default file to generate its core policy
object. This policy must be available to every virtual machine so its data
source will always be in the same place: ${JAVA_HOME}/jre/lib/securi-
ty/java.policy. You can create additional policy files by following its syntax.

Phrased loosely, the file format simply says “grant” (some code from a
specific location – this is optional – signed by some certificate – this is
also optional) permission to access a “target” using a specific “action.”

FIGURE 2 Class loading sequence with default Permissions

FIGURE 1 The policy, Codesource and Permission relationship

25JANUARY 2000

Java COM

PointBase
www.pointbase.com/jdj

Java COM

26 JANUARY 2000

The codeBase and SignedBy attributes are optional. If you don’t
include them, the grant will apply to all code. You can also employ the
wildcard “*” symbol, though wildcards succeed only when used in a range
denoted by a period “.” or when used by themselves. For example, “*” and
“a.*” are both valid, but “a*” isn’t and neither is “a*b” (see Listing 1).

Once you’ve written a policy file, you can integrate it in a number of
ways. To dynamically link policy files, include the file as a runtime para-
meter and add the following flag to your java invocation: -Djava.securi-
ty.policy=[fully-qualified filename]. For instance, the command “java
–Djava.security.policy=/foo/home/myperms.policy Foo” will execute
“Foo.class” with a policy instantiated using the file “myperms.policy”.

You can also drop the policy file in a user’s directory to make it avail-
able for all code run by that user. This is a handy tactic for systems
administrators who need to assign different Permissions across a user
base. This method is possible because the java.security file specifies user
directories as appropriate locations for policy files. Of course, this line
can also be removed to prevent users from creating such policies.

Finally, you can make your new policy file globally available to a vir-
tual machine by creating an entry for it in the java.security file. This has
the disadvantage of requiring a separate installation procedure when
code is moved across platforms, but may be useful for granting privileges
to applications that are seldom redeployed.

To install a policy file statically in this manner, take a look at the fol-
lowing lines of the java.security file:

policy.url.1=file:${java.home}/lib/security/java.policy

policy.url.2=file:${user.home}/.java.policy

You need to add a similar line. For example, if you have a policy file
named myapp.policy located in the “/usr/local” directory, you’d add the
following line to the entries in java.security:

policy.url.3=file:/usr/local/myapp.policy

This will inform the virtual machine of your policy object every time
Java starts.

A simpler way to create and add policies is to use Java’s policytool, a
GUI interface to the process. Since policytool hides syntax and usage, it’s
important not to become overly reliant on it. Policytool is mostly helpful
for administrators and nonprogrammers. It’s located in the $JAVA-
HOME/bin directory and can be executed from a command prompt
with the command “policytool.”

What Happens in a Security Check?
While application developers typically needn’t bother with the actual rou-

tines involved in Permissions checking, understanding the low-level func-
tions may aid in the security design process. The relevant objects are Secu-
rityManager, AccessController and AccessControllerContext (see Figure 3).
First, SecurityManager comes into the picture. When a method requires a
Permission to properly execute, that method retrieves the active Security-
Manager and calls its checkPermission() method. Who decided which
core methods in the Java language are protected? That is, who determined
that java.io.FileInputStream.read() should ask a SecurityManager before
executing? The language’s security designers made these decisions and the
existing standard Permissions indicate their choices.

You can protect operations in your own application code by adding
the same code block that the Java designers used:

SecurityManager sm = System.getSecurityManager();

If (sm != null) sm.checkPermission(perm);

// if the permission isn’t granted, an AccessControlException

// will be thrown.

If you want core Java code to pass more security checks than the
designers created, you must develop subclasses and require security
checks in their methods. For example, if you decide there’s a need to pre-

vent the creation of large strings, subclass string and add the Security-
Manager.checkPermission code block to any constructor or method in it
you wish to protect. Theoretically, you could force a Permissions check
before your application executed any method in the language.

SecurityManager, however, runs interference only for your code. In
the current implementation its checkPermission() method does just one
thing: it passes the Permission off to AccessController.

AccessController is the true workhorse of the security core. It’s a com-
plicated beast, relying on a number of native calls, and it’s difficult to do it
justice in a few short sentences. Essentially, when checking a Permission,
AccessController gets a snapshot of the current execution stack, which is
encapsulated in an AccessControllerContext that uses native, VM-specific
methods to gather an array of classes that represent the current calling
Thread’s stack. AccessController then checks the Permissions (in the form
of ProtectionDomains) associated with each class in this stack. If any class
– even one – lacks the Permission being tested, an AccessControlExcep-
tion is thrown. Otherwise the method returns silently.

Higher Powers:The doPrivileged() Block
You can see that eventually security checks equate to whether all

classes in a stack analyzed by a particular AccessControlContext are
linked to the necessary ProtectionDomain. But there’s a way to request
that the calling class be tested only for the necessary Permission, not the
entire stack. The slightly unwieldy yet useful doPrivileged() block per-
mits such functionality.

Say Admin.class has Permission to read a secret string. User.class does
not – and should not – have this Permission. Yet in certain circumstances
a User object needs to be able to execute Admin’s sensitive method and
get the value of that string. You can permit this without granting
User.class access to the value’s data source by using the doPrivileged()
block, which looks like Listing 2.

Possible uses for such a code block might include changing a pass-
word or reading a KeyStore file. The doPrivileged block permits such
actions in isolated code snips without requiring developers to grant a
broad Permission to an entire application. Since all core Java classes are
granted all Permissions, it can be used to execute sensitive methods
even if a client application has no Permissions at all. Note: If the doPriv-
ileged block returns a value, it’ll always return an object, so it must be
cast to the appropriate type. It’s obviously dangerous – suitable only for
short functions – but it’s an extremely useful tool when used cleverly.

FIGURE 3 The security checking sequence

27JANUARY 2000

Java COM

American
Cybernetics

www.multiedit.com

Java COM

28 DECEMBER 1999

Determining What Permissions Are Needed
Judging by posts to various Java mailing lists,

deciding what privileges your code needs is
often a frustrating endeavor. This may be par-
ticularly true if you’re porting jdk1.1 code to the
Java 2 platform, which suddenly requires all
sorts of Permissions to execute methods that
previously worked fine.

There’s currently no tool available to auto-
matically generate a policy file for specific
code. The best way to tackle the task is to plan
with Permissions and policy in mind from the
beginning and design accordingly. This
approach has the benefit of putting a great deal
of AccessControl checking at the designer’s dis-

posal so that developers can better customize
applications for different use cases.

If a developer misses the security element
at design time, he or she can solve the issue
through runtime testing. Pay close attention
to the thread dump that’ll appear when an
AccessControlException is thrown. This dump
will explicitly report which Permission is
missing. Try adding that Permission to the
policy file and test the code again. If it suc-
ceeds, though, consider the implications of
adding the Permission before you commit to
it. Consider whether a doPrivileged block or
some alternative might provide better securi-
ty. At the very least, be aware of the risks of
any Permission you grant and watch for

exploitation of those risks during your pro-
gram’s operation.

Keep in mind that without using doPrivi-
leged(), every class in a thread of execution
must be granted the Permission for Java to be
happy. If class A calls a method in class B that
calls a method in class C that requires a Per-
mission, all three classes must be granted that
Permission.

Conclusion
It’s impossible to craft completely safe appli-

cations. Short of not developing or executing
code at all, there’s simply no such thing as
absolutely secure software. But by understand-
ing the Java 2 security core and integrating it
into the design process, you’ll find your appli-
cations are highly resilient to many common
attacks and ensure that your system isn’t com-
promised by malicious Java code.

For further information on Java security,
check the official documentation at www.java-
soft.com/security. An excellent in-depth study
of the architecture is the highly recommended
Inside Java 2 Platform Security by Li Gong, the
Sun scientist who led its development.

AUTHOR BIO
Patrick Sean Neville has produced Web-based applications and Java
systems for television companies, advertising agencies and a variety of
new media companies. Creator of The Code Studio
(www.codestudio.com), he’s also the chief Java engineer at
Stockback.com.

grant codeBase "file://home/code"
SignedBy "Admin" {

// example with no action
permission java.lang.RuntimePermission
"setFactory";

// two examples with action fields, one
// containing a wildcard
permission java.net.SocketPermission
"*:*", "connect,accept";
permission java.util.PropertyPermis-
sion "user.home", "read";

};

/*This is a method in Admin.java, which
any class may call.*/
dmin.java, which any class may call. */
public String getValue() {
String result = (String) AccessCon-

troller.doPrivileged(new PrivilegedAc-
tion() {

public Object run() {
// Admin has permission to access this
// method
// even if its calling classes do not

return readSecretValue();
}

});
return result;

}

Listing 2

Listing 1

neville@codestudio.comCareer
Central

www.careercentral.com

29DECEMBER 1999

Java COM

4th Pass
www.4thpass.com

Java COM

30 JANUARY 2000

WRITTEN BY
TODD SCALLAN

Assuring Reliability of Enterprise
JavaBean Applications

T
he Enterprise JavaBean specification demonstrates the evo-
lution of distributed objects from middleware to application
components. In this article we’ll discuss where EJB fits into
the distributed object landscape.

C O R B A C O R N E R

Middleware in the Middle Tier
The three-tier architecture is funda-

mental to the deployment of applica-
tions on an Internet-based infrastruc-
ture. A Web server fronts the middle tier
(see Tier 2 in Figure 1), and there are
many systems behind it that constitute
the value-add for an e-business applica-
tion. From a practical perspective, e-
business applications are assembled
from disparate components and must
be accessible to Web clients (Tier 1)
through the Internet and reach relevant
data repositories (Tier 3), such as finan-
cial data or travel reservations.

Middleware is the glue that integrates
systems within the middle tier. It plays a
vital role in application reliability since inte-
gration points among the various systems
are potential points of failure. As distributed
object technology has become well accept-
ed within mainstream software applica-
tions, standards such as CORBA and Java’s
RMI have emerged as preferred object-
communication mechanisms. However,
from an application perspective, these tech-
nologies present a rather low abstraction
level, leaving the task of defining how com-
ponents should interoperate to the pro-
grammer. This means inventing proprietary
programming interfaces that must be
adhered to by all parties involved with the
creation of the application.

One fact of life concerning technology
is that the “waterline” is always rising,
making technology more accessible and
easier to use (see Figure 2). In the Internet
era the waterline corresponds to the high-
er level of abstraction presented by tech-
nologies for assembling Web-based appli-
cations. More to the point, software
frameworks provide a simpler model for
creating e-business applications, support-
ing the development of software compo-
nents that can easily work together.

An application component implements
some core business logic for an applica-
tion. A framework is a software infrastruc-
ture that defines certain rules of engage-
ment among application components.
These rules are typically implemented as
services with standardized interfaces that
allow components to interoperate without
prior knowledge of other components’
existence. The ability to cut and paste
information between different desktop
tools is a classic example. A framework
also provides an execution environment
for end users and applications, as in the
Microsoft Windows desktop.

Although frameworks and component
models offer convenience for quick assem-
bly of applications, only those based on
proprietary technologies and captive
install bases, such as Microsoft’s OLE for
desktop integration, have historically
enjoyed widespread industry acceptance.

But thanks to the Internet, the tide appears
to be turning for an open standard frame-
work as the industry embraces EJB.

Relationship of EJB to CORBA and RMI
CORBA is an open industry standard

that facilitates remote object invocation via
published interfaces. However, it doesn’t
yet specify a market-accepted component
model for plug-and-play interoperability.
(We’ll touch on CORBA’s new component
model specification in a little while.) To
illustrate this point, contrast CORBA with
its parallel universe, Microsoft:

DCOM is to CORBA as OLE is to ________.

In other words, DCOM and CORBA pro-
vide the communication substrate in their
respective universes. OLE is the frame-
work that sits on top of DCOM; you’d expe-
rience it daily as a Windows user. But in the
CORBA universe, what is analogous to
OLE? What provides the higher abstrac-
tion level moving up the waterline? The
answer isn’t particularly clear yet, but EJB
seems to be emerging as a viable solution
for e-business applications.

The EJB specification defines an exe-
cution and services framework for serv-
er-side Java components. Application
servers house EJB containers that togeth-
er manage threading, transactions,
object lifecycle and other EJB needs. EJB’s
growing acceptance as a standard com-
ponent model for middle-tier applica-
tions is supported by commercial prod-
ucts from industry movers like IBM, BEA
Systems and Oracle, and by increasing
adoption by customers. For an EJB to be
accessed from outside the framework, its
container must expose a public interface
through CORBA or RMI (see Figure 3).
Since RMI is a Java-only communication
mechanism, it can be used over IIOP to
speak to non-Java applications.

It should be noted that the CORBA
Component Model (CCM) – part of the
recently adopted CORBA 3.0 specifica-
tion – defines a framework for applica-

IN
T
E

R
N

E
T

Web
Clients

Web
Server

Tier 1 Tier 2 Tier 3

Databases
Middleware

FIGURE 1 Three-tier architecture for e-business

Application Components

Middleware

Network

FIGURE 2 Rising waterline of technology

31JANUARY 2000

Java COM

Sybase
www.sybase.com/easerversuccess

Java COM

32 JANUARY 2000

tion components implemented in any
major programming language. CCM
extends the EJB model that will allow
Java and other programs to operate on
the same CORBA platform.

Challenges for Objects in E-Business
With the rapidly growing need to inte-

grate heterogeneous systems and enable
applications for e-business, system com-
ponents are being tied together as distrib-
uted objects. These can be new applica-
tion modules, such as EJB components,
or existing applications that are encapsu-
lated in order to be integrated into the
environment. Distributed objects exhibit
some very useful characteristics:
• Objects can be located anywhere

across a network, obviously a necessary
attribute for distributed applications.

• Transparent access allows clients to
interact with servers regardless of phys-
ical location. The underlying CORBA or
RMI infrastructure takes care of locat-
ing a server resource. Transparency is
also very important to developers as it
allows them to build applications with-
out having to worry about networking
or communication details.

• By using CORBA’s IDL for describing
object interfaces, an application can
be implemented in the programming
language that’s appropriate for the
task at hand and can reside on any
platform. For example, a Java object
running on a Windows platform can
invoke a C++ object on a UNIX plat-
form. The Java client isn’t aware that
the server is implemented in C++
since it’s communicating with the
server using native Java constructs.

• Distributed objects provide the basis
for building and deploying compo-
nent-based applications capable of
supporting e-business.

The sophisticated nature of three-tier
e-business applications presents several
challenges for successful deployment:
• Complexity: A typical e-business site

consists of many different system
components, including various plat-
forms, application modules and net-
work connections. Distributed object
applications introduce a whole new
development paradigm that requires
deployment and maintenance issues
to be considered as early in the devel-
opment cycle as possible. Ask yourself:
How will I diagnose system problems
in the lab or the field? How will I con-
trol or log usage of my server objects?

• Coordination: In a system with this
magnitude of diversity and distribu-
tion, there are many participants in

the creation and deployment of the
various components. It’s no longer
typical for an entire application life
cycle to be managed by a single
department; input must be mar-
shaled from multiple sources. Ques-
tions of coordination include: Does
the client application developer
understand the semantics of the
interface presented by a particular
server? Is the correct version of the
server implementation being used?

• Change: In the age of e-commerce,
applications are updated more rapidly.
Delivery cycles can be months, weeks or
even days. Numerous e-business appli-
cations are built every day only to fail in
production due to a lack of scalability,
flexibility or reliability. Middleware
products are changed from one vendor
implementation to another or even
between implementations from the
same vendor – witness the existence of
multiple application servers from lead-
ing vendors. Moreover, changes to e-
business applications are introduced
incrementally into live systems since the
entire system can’t be brought down to
roll out a new release of a component.

Before going live it’s imperative to
test the system and validate that it’ll
perform correctly. Rapid change
introduces uncertainty: Will the sys-
tem function properly? Will it scale
with anticipated loads in production?
What happens if a server object fails?
The ability to methodically capture
test cases and performance metrics is
essential to quantifying the success of
change. Even after ensuring that the
system will work in a test environ-
ment, the behavior of the live system
must be monitored. This will uncover
potential problems and allow iterative
improvements to be made, thereby
maximizing the system’s reliability.

Application servers based on the EJB
specification facilitate the creation of
Web-based e-business applications.
Such applications operate in the mid-

dle tier and rely on distributed object
communication for interoperability. To
make sure an EJB implemention will
run reliably, one can test its behavior
and scalability from outside the frame-
work. This can be achieved by exercis-
ing functionality and simulating usage
models through public interfaces via
the CORBA or RMI protocols. Test
automation can help streamline the
process of assuring the reliability of an
EJB application. Segue Software's reli-
ability solutions address EJB function-
ality and scalability, and offer mecha-
nisms for diagnostics and control in a
distributed object environment.

Conclusion
The power of distributed object tech-

nologies such as EJB lies in the support
for object-oriented designs and distrib-
uted implementations. The payoff for a
successful component-based applica-
tion can be substantial, but the costs can
be even more significant if the proper
steps aren’t taken to guarantee the quali-
ty of design and implementation. To
ensure the reliability of e-business appli-
cations, it’s necessary to cover the follow-
ing essentials for successful deployment:
• Function: Validate that each compo-

nent functionally behaves as expected.
• Scalability: Ensure that components

perform well under various load con-
ditions.

• Diagnostics: Monitor, troubleshoot and
analyze behavior anywhere in the system.

• Control: Meter usage of and control
access to objects.

As distributed objects evolve from mid-
dleware to application components, the
need for advanced test automation grows.
EJB is an early example of industry con-
sensus around application components
in the middle tier of e-business, and is
therefore driving the technology water-
line for test automation upward.

AUTHOR BIO
Todd Scallan is the
director of product

management for Segue
Software’s distributed

computing products. He
holds a BS in electrical

engineering from Lehigh
University and an MS in

computer engineering
from Syracuse University.

CORRECTION
In the November
CORBA Corner
column, an incorrect
URL was supplied for a
list of generic software
project risks. It should
be www.construx.com. tscallan@segue.com

C O R B A C O R N E R

CCM

EJB Framework

CORBA RMI
IIOP

FIGURE 3 EJB, CORBA and RMI are not mutually exclusive

CORBA is defined by the Object
Management Group (OMG) – a
consortium of more than 800
users and vendors. CORBA defines
mechanisms whereby objects
implemented in different program-
ming languages can communicate
transparently through method
invocations. Server interfaces are
described in a neutral language
called IDL, which is mapped to
native language constructs such
as Java, C++, Ada, Cobol and
others. IIOP is the underly-
ing wire protocol supporting
communications among different
ORBs and platforms.

RMI is the Remote Method Invo-
cation facility provided as part of
the JDK. Objects can make
remote invocations on one
another through public interfaces
specified in Java, making RMI
suitable only for Java programs.
However, the JDK now supports
RMI over the CORBA wire proto-

col – IIOP. This allows Java
objects to utilize RMI

while offering inter-
operability with
CORBA objects

implemented in any
language.

YouCentric
www.youcentric.com/nobrainer

33JANUARY 2000

Java COM

A:

Q:
A:

Q:
A:

S Y S - C O N R A D I O

Q:
A:

Q:
A:

Q:
A:

JDJ: What is your role in the Java 2
Enterprise Edition, and what do you
see as its strength?
Roth: We’re extending the Java platform
from its traditional base on the desktop all
the way into server-centric space. We want
to take write once, run anywhere and
extend it all the way to the server side so
you can write your business applications
once, especially Web-facing business appli-
cations, and have them run on any app
server. The good news is that we’re 90%
of the way there. We want to make sure
that people can deliver the same Java
applications on a server anywhere. That
includes applications with servlets,
JavaServer Pages and Enterprise JavaBeans
– its three major components. There are a
lot of other APIs under the hood so you
can do transactional systems. There are
JNDI, JTA and JDBC. Basically, we want to
make it easier to run business applications.

JDJ: Tell us about the whole Enter-
prise system. Would all the APIs
within the Enterprise keep changing?
How is it going to look to the end
developer?
Roth: We’re beginning the process of
building a platform. Our draft specification
is up on the Web at Java.Sun.com/j2ee.
One of the things in the platform is a
table that states the required elements of
the platform, which include Java 2 Stan-
dard Edition, Enterprise JavaBeans 1.1,
servlets, JavaServer Pages and so on.
We’re going to build a reference imple-
mentation of the platform to prove you
can actually implement the stuff we have
in our specs. We’re also going to have a
set of tests – so we can test not only our
implementation but other peoples’ – and
a branding program. You pass the test –
the Enterprise developer will be guaran-
teed. Folks can brand an application serv-
er, for example, and be guaranteed that
the components will write once and they
can run them anywhere.

JDJ: So whenever a developer devel-
ops that Enterprise solution, if they
see a server that is Enterprise
enabled, they can be sure that it will
come with all the necessary compo-
nents to support their Enterprise
solution.
Roth: Exactly. When something is Java 2
Enterprise Edition branded, you can be
assured that JavaServer Pages, servlets
and Enterprise JavaBeans will all be
there. They’ll all be versions, but you can
begin to see that it exists. Ultimately
we’re going to evolve the platform to add
more functionality. One of the things we
may add to the table, for example, in
future releases, will be the Java Message
Service. That’s something that may find
its way into the platform. It’s a crucial
piece of technology, but I think we want
to focus on delivering something that
supports Enterprise JavaBeans, JavaServ-
er Pages and servlets.

JDJ: You’re talking about the server
engines here?
Roth: Yes. Compatibility testing is very
important to us. We want to make sure
that we don’t have any fragmentation in
the servlet space. What we’re working on
and what our engineers are working on is

a new tool called JCheck. It’s a way to
guarantee that you’ve lived up to the
requirements. It’s not a compatibility kit,
and we still preclude anyone from saying
that they’re servlet compatible, but it’ll be
a way to get a relatively good idea of
whether developers have all the APIs and
if they implement them in the way we say
and only the way we say. That’s how we
ensure write once, run anywhere, and that
they behave properly. JCheck is currently
under development. We have some nuts
and bolts to work on, as well as getting it
through the lawyers and licensed properly.
We intend to make it a tool, just like the
JDBC tests that will be available soon in
the public domain in binary form.

JDJ: You’re now deploying real hard
resources to work with the Apache
team to come up with Tomcat, which
is another open-source community.
Are there other examples of Tomcat
in other areas of the Enterprise
world that are going to pop up?
Roth: I think that we responded to our
community source licensing program as
well as servlets and JavaServer Pages in
response to a direct, concerted effort by
the industry; we don’t see that in any
other place. I think Sun’s announcement

of its intent to license the source of
servlets and JavaServer Pages to the
Apache group is a boon to developers. It
leverages off the innovation that’s able to
happen in the open-source environment. I
want to make one point, however, and
that is that we’re licensing the source only.
We’ll continue to maintain the specifica-
tion as part of our Java community
process, sort of an auditable, verifiable
way that we’ll move our technologies for-
ward. Apache will be a key member of the
expert group, as will other folks in the
industry who have a vested interest in this.

JDJ: You chose Apache as your refer-
ence, so there’s going to be no other
reference that’s offered for servlets.
Why not Netscape Enterprise, which
is one of your alliance partners, or
JWS, which is a Sun core Web
server?
Roth: That’s a really good point. In gener-
al, I don’t think there are many instances
of Sun actually licensing commercial prod-
ucts and making a commercial product in
a reference implementation. We didn’t do
it with EJB. We didn’t do it with a lot of
our technologies. We certainly didn’t do it
with JNDI. What we’re doing is basically
taking our implementation and giving it to
the community. If we were to take
Netscape and their servlet engine, for
example, that would pretty much irritate
every other vendor. You could say that
Apache is a kind of vendor, but it’s sort of
a new beast. There are really two factors.
One, it was our technology going into
Apache. Two, based on the market data
I’ve seen, most notably from Netcraft, it’s
clear who the market leader is. Our goal is
to get the stuff ubiquitous, and Netcraft
tells me that Apache has – at least if you
believe the June numbers – about a
57.5% market share, at least in terms of
Web servers on the Internet. It was clear
that this was the right process and the
right thing to do.

with BILL ROTH PRODUCT LINE MANAGER, SUN MICROSYSTEMS

SYS-CON Radio Interview

Java COM

34 JANUARY 2000

SYS-CON Radio Interview
Bill Roth (r.) being interviewed by Alan Williamson of SYS-CON Radio

35JANUARY 2000

Java COM

Applied
Reasoning

www.appliedreasoning.com

WRITTEN BY
S.ALAN EZUST

Using the Java Media Framework
with Objectivity/DB

T
he Java Media Framework API allows developers to incor-
porate various media types into Java applets and applica-
tions, and supports the capture, transmission, playback and
transcode of many types of audio and video. There’s an
implementation written in 100% Pure Java, so the code can
be ported onto any supported Java platform.

J A V A M E D I A F R A M E W O R K

Java COM

36 JANUARY 2000

Objectivity for Java is a cross-platform,
scalable, industrial-strength, object-ori-
ented database that runs on NT and most
flavors of UNIX. One of its strengths is its
ability to store, manage and retrieve large
binary objects.

This article demonstrates that the two
technologies work quite well together,
and will show you how to:
• Represent multimedia objects as per-

sistence-capable classes in Objectivity.
• Write adapters that permit these

objects to be read as InputStreams.
• Send the InputStreams to the JMF

MediaPlayer.

Motivation
There are a number of advantages to

storing multimedia data in an OODBMS
rather than leaving them in flat files;
many of them are related to contain-
ment and management issues. It’s easy
to add metadata (such as authors,
actors, animators and producers) to a
multimedia database object by simply
adding data members to the classes that
represent them. This also leads to the
possibility of querying the database
based on such criteria.

A single multimedia object may be
broken up into smaller segments. This
means that random access to a particu-
lar part of the video or audio clip is also
possible. Modifications can be made
and a history can be kept on who per-
formed what changes and when. These
types of activities would be difficult to
do outside a database framework.

Because the data is represented as an
object, it’s also possible to take advantage
of OO features of the Java language to
manipulate a multimedia object the same
way one would manipulate any other Java
object. The different kinds of multimedia
data can be represented as different sub-
classes with inherited and overridden
methods (as we’ve done in this example).

Since Objectivity can easily manage
large databases and store gigabyte-size
multimedia objects in a single database
file, it’s an ideal storage medium for
such data. Because it’s a pure object-ori-
ented database, there’s no need to break
up the data into relational tables and
reassemble them into objects at retrieval
time. Because it supports distributed
databases, it’s possible to distribute the
multimedia data across multiple hosts,
even replicate parts of the database at
multiple sites, and still be able to back
up, restore and install all of the stored
multimedia data with a simple adminis-
trative tool. This allows Objectivity to
manage the directory structure of the
data so you don’t have to.

Persistence-Capable Classes
THE SCHEMA

To store a large multimedia object, it
makes sense to break it up into smaller

chunks of data. This provides some flex-
ibility in the way we might decide to
stream the data out. The persistence-
capable classes we use for this applica-
tion are shown in Figure 1.

The ooLibrary provides a name
lookup facility for a collection of ooBlob,
so we can store and retrieve many mul-
timedia objects with this application.
The ooBlob is a collection of ooBlobSeg
objects, and each ooBlobSeg contains
an array of bytes that represents a chunk
of the raw binary data.

Each class that needs to be stored in
the database must be defined as a per-
sistent-capable class. Objectivity pro-
vides a semitransparent interface to the
Java language, but because there’s no
pre- or postprocessor, certain things
need to be done to the class to make it
persistent-capable. First, each class
must implement a persistent interface.
The easiest way to accomplish this is to
extend from ooObj, which implements
the persistent interface properly. The
getters must then call fetch() and the
setters must call markModified(). Final-
ly, all access paths to the data members
must be restricted to going through
these methods. While this does require
some preparatory work to reuse preex-
isting classes, it permits Objectivity to
run on all standard JVMs and develop-
ment environments without any special
customizations or patches.

STORAGE HIERARCHY
Objectivity supports a distributed

storage hierarchy with page-server
architecture (see Figure 2). At the top
level is a Federated Database that pro-
vides an entry point into the persistent

ooBlob
{ordered}

1

*

*

ooLibrary

ooBlobSeg

FIGURE 1 Persistence-capable classes

JMF provides a platform-neutral framework
for displaying time-based media

37JANUARY 2000

Java COM

Tidestone
www.tidestone.com

J A V A M E D I A F R A M E W O R K

Java COM

38 JANUARY 2000

storage. An FD is a collection of data-
bases in the same sense that Star Trek’s
Federation of Planets is a collection of
planets. Each database corresponds to a
physical file on disk, but need not be
physically located on the same host or
network. A lock server process provides
the locking services for the entire feder-
ation, and each client can talk directly
to the page server host after it has
received proper authorization from the
lock server.

Each database comprises a collection
of containers that provides another level
in our storage hierarchy. Each object
must reside in a container, which in turn
resides in a database, which resides in
an FD. Containers and databases can be
created and destroyed dynamically as
easily as objects.

Persistent object references can refer
to objects in other databases, so object
navigation is still location-transparent
across databases. Objectivity permits
65,535 databases per federation and
32,767 containers per database. The
page limit per container is 65,535 logi-
cally addressable pages, but a large array
that spans multiple pages requires only
one logically addressable page and can
span many more physical pages not
subject to the page limit of a container.
Since page size can be up to 64KB, this
means that Objectivity can address and
store petabytes of data without prob-
lems.

The locking granularity is at the con-
tainer level. Since most multimedia
objects can fit in a single container, stor-
ing each multimedia object in its own
container makes perfect sense. This
means that once a lock is obtained on
the container, a client application can
talk directly to the page server that holds
the data and stream through the entire
multimedia object without needing to
stop in the middle to communicate with
the lock server process. The program-
ming example, which you can download
from www.JavaDevelopersJournal.com,
can be easily customized to support a
larger segment size for larger multime-
dia objects, but some small modifica-
tions to the code would need to be made
to allow for a multicontainer, multime-
dia object.

Streaming the Data
ooBlob has no streaming interface;

it’s just an aggregate of objects. However,
it’s fairly straightforward to write a wrap-
per for ooBlob, which does provide this
interface. Class ooBlobStream derives
from java.io.InputStream. Each instance
holds onto an ooBlob reference and
serves out data on demand to the user of
the instance. ooBlobStream instances
are normal transient Java objects so
they’re not part of the schema.

ooBlobStream doesn’t do fancy dou-
ble-buffering to ensure that there’s
always available data. The application
has been tested on a Pentium II/233 and
can play 2–5 minute MPEG files without
any delays. It’s possible that double-
buffering may be necessary on some
platforms and with some multimedia
types, but it seems that JMF media play-
er does all the buffering that’s required
to stream the data smoothly on data
that’s been tested so far.

What’s really nice about the Input-
Stream interface, however, is that you
can either wrap a java.io.BufferedInput-
Stream around it, which may provide
better performance, or write your own
multithreaded double-buffered input
stream, ensuring that there’s always data
available to be read. Such a class could
be quite general-purpose and need not
be aware of the fact that the stream it’s
buffering is coming from Objectivity.

Thread Policies
Objectivity supports multithreaded

clients, but it also supports multiple
database sessions per process. It may be
desirable to have a strict mapping of
threads to sessions, where each thread
belongs to a session. This is called the
“restricted thread policy.” If we use this,
it means that each thread that accesses
persistent data must be explicitly joined
to a session before it can proceed, and
each thread is joined to one session at a
time at most. In our ooBlobSeg code
most of the accessors do explicitly join
to the session. The reason for this is that,
in this particular multimedia applica-
tion, we have no control over which
threads access our data. Perhaps in

another application with multiple con-
current open sessions, explicitly joining
every incoming thread to a session is
either inconvenient or impractical. Thus
it may make more sense to use the
“unrestricted thread policy,” which
would allow a thread to implicitly and
automatically join the session that owns
the persistent object being accessed.

Java Media Framework API
JMF provides a platform-neutral

framework for displaying time-based
media. The Java Media Player APIs are
designed to support most standard
media content types, such as MPEG-1,
MPEG-2, QuickTime, AVI, WAV, AU and
MIDI. The API offers a platform-neutral
interface for writing multimedia appli-
cations.

JMF doesn’t directly support reading
from InputStream, so there’s still a bit of
work to be done before we can play the
multimedia objects directly from persis-
tent store. First we must create a class
that implements PullSourceStream and,
optionally, the seekable interface to pro-
vide random access to the multimedia
object. The JMFSourceStream wraps an
InputStream, a ContentDescriptor and a
long that represents the size of the
stream.

Next we must create a class that
derives from PullDataSource and prop-
erly wraps the PullSourceStream. Once
done, we can pass this on to the JMF
MediaPlayer and play our multimedia
object in real time.

Conclusion
Objectivity provides a convenient

and high-performance storage mecha-
nism for multimedia files because of its
page server architecture. Streaming data
in real time is handled quite well with-
out any extra double-buffering.

It took approximately four person-
days to write the code that stores and
plays multimedia data from Objectivi-
ty. I had to learn the JMF API and its
limitations during this time. The
source code is readily available for
download from www.JavaDevelopers-
Journal.com.

Acknowledgments
I’d like to thank Chad Adams from

Payback Training Systems for his assis-
tance in helping me understand the JMF
API and Java Multimedia Players in gen-
eral. I’d also like to thank Al Cherri at
Objectivity for his comments.

Federated
Database

Database
(File)

Container Page/Slot

FIGURE 2 Distributed storage hierarchy with page-server architecture

ezust@brainwashed.com

AUTHOR BIO
S. Alan Ezust is a senior

systems engineer at
Objectivity Inc.

(www.objectivity.com), a
leading provider of scalable,

mission-critical,
object-oriented databases.

39JANUARY 2000

Java COM

Computer
Job Store

www.computerjobs.com

PointBase, formerly known as DataBahn
and DataBean, is legendary Oracle founder
Bruce Scott’s latest venture. PointBase, an
embedded database that’s written entirely in
Java, is available for a wide variety of plat-
forms. The main advantages of embedded
databases are their ultra-small size, self-
management capabilities and portability.
The PointBase Server Edition is designed to
run on a wide variety of hosting platforms
and uses a very small footprint. In fact, the
Mobile Edition can reportedly consume as
little as 270K of memory on the client.
These types of databases are ideal for
embedded systems and applications that
require the services of a full object-rela-
tional database without all the associat-
ed overhead. PointBase’s Mobile Edition,
the smaller of the two versions, has been
designed to run as part of a lightweight
client application. With the Mobile Edi-
tion you can store Web data at the client
level without requiring complex client-
side installation routines. Typically,
developers have avoided using such a
technique because the complexity in
synchronizing the mobile database
with a back-end database is more trou-
ble than it’s worth. PointBase’s clever
“unisync” capability has been designed
to address this problem. Through this
option you can synchronize data at
both ends, making it much more prac-
tical to use a client-side mobile data-
base in your applications.

PointBase allows you to manage the
database directly using a JDBC-based
API. Therefore, programs that interact
with the data can also manage the data-
base as part of their normal processing.
Despite the fact that the product is
meant to use a small amount of real
estate, it still comes with an impressive
number of database features. PointBase
supports both SQL-92 and SQL-99 stan-
dards as well as Java stored procedures.
With the Server Edition you can create a
complete small-footprint Web server
platform that includes both the database
and an application by using server-side
Java code with PointBase.

Installation and Configuration
PointBase offers restricted versions of the

Mobile and Server editions that you can down-
load free from their Web site. While they’re fully
functioning, they only let you create a scaled-
down database limited to 5MB. The software is
packaged in a zip archive format and the instal-
lation files are InstallShield Java Edition. I
downloaded the PointBase Server Edition
archive that contains the server installation,
the client installation kit and the documenta-
tion in Adobe PDF format. The installation
process itself is incredibly simple and requires
little interaction to complete. I had the server
software and the client tools installed in under
10 minutes and the server utility running
shortly after that, as shown in Figure 1.

Working with PointBase
The PointBase Server includes a simple but

useful interface for starting and stopping the
database as well as monitoring any activity. You
can set different levels of messaging that allow
you to watch the activities of the server as it
works. PointBase provides three separate inter-
faces for working with the database – PointBase
Commander, PointBase Console and the JDBC
APIs. Although I worked mostly with the con-
sole, the Commander utility provides a com-
mand-line–based interface that allows you to
run scripts of commands against the database
as necessary. This allows a developer to create
batch scripts to build and populate databases
without having to write a Java program or being
forced to use a visual interface (which doesn’t
work well for batch-type processing). The
PointBase Console provides an interactive
interface for working with the database, as
shown in Figure 2.

PointBase’s marketing literature and docu-
mentation are geared toward presenting Point-
Base as an embedded solution, which is evident
when you work with an interactive console.
Although I was able to perform most of the stan-
dard types of database operations, such as cre-
ating tables, viewing the database catalog and
importing data, the utility itself is very basic.
There are no frills whatsoever, and the forms
tend to be sluggish at times, even while running

jmilbery@kuromaku.com

AUTHOR BIO
Jim Milbery is a software consultant with Kuromaku Partners
LLC, based in Easton, Pennsylvania . He has over 15 years
of experience in application development and relational
databases. Jim can be reached via the company Web

site at www.kuromaku.com.

Test Environment
Client/Server:
Gateway Solo, 256MB RAM, 14 Gigabyte disk drive,
Windows NT 4.0 (Service Pack 4)

PointBase, Inc.
2121 South El Camino Real, Suite 1110
San Mateo, CA 94403
Phone: 877 238-8798
www.pointbase.com

Java COM

40 JANUARY 2000

FIGURE 1 PointBase server manager

P
R

O
D

U
C

T

R
E

V
I

E
W

P
R

O
D

U
C

T

R
E

V
I

E
W

Synchronize data between
client and server databases

PointBase
Mobile Edition/

Server Edition 2.0

REVIEWED BY JIM MILBERY

on a fast desktop machine. End users typically wouldn’t interact directly
with PointBase except through programs that you provide them, so this
isn’t a real big issue. However, if you’re somewhat new to Java and rela-
tional databases, you’re going to have a tough time working with this inter-
face. Experienced object and relational database developers will have no
trouble working with the console; I easily imported some existing Oracle
database scripts. The console interface provides a tool for importing data
from flat files or from an existing database, and I successfully moved data
between the two without difficulty.

The real power of PointBase is its ability to manage all aspects of the
database at a low level. Although the database itself is easy to maintain,
there are an incredible number of parameters you can set, such as data-
base page size and even encryption algorithms for the database pages.
PointBase supports row-level locking, repeatable reads and automatic

lock-escalation – quite impressive when you consider the small foot-
print of the database. With the programming interface you can com-
pletely handle backup and recovery within your application code.

Data Synchronization
One of the main features of PointBase is its ability to synchro-

nize data between client and server databases. PointBase uses a
publish/subscribe model that allows data to be moved over a
variety of protocols such as TCP/IP, HTTP, SNA, JINI, IIOP, e-mail
and MAPI. While most database vendors provide similar capa-
bilities for their mobile versions, PointBase supports heteroge-
neous database synchronization. For example, client databases
can be stored in PointBase and then synchronized with a mas-
ter database that’s stored in Oracle. PointBase even provides
interfaces for managing the inevitable data conflicts that occur
with distributed databases, as well as a sophisticated API for
managing the synchronization process. If you don’t have a lot
of experience working with databases and Java, you might find
yourself getting a little lost, as the documentation and exam-
ple code that comes with PointBase tends to be a bit skimpy.

Summary
Embedded databases will play an increasingly larger role

as Web-based applications require more sophisticated client-
side data storage options. Relational databases are well
known and widely understood, so it makes sense to leverage
this experience for lightweight clients and embedded sys-
tems. PointBase offers a very comprehensive package from
an engineering team with vast experience in the develop-
ment of database engines. I’d recommend evaluating Point-
Base if you’re in the market for an embedded database.

Employment
Ad

FIGURE 2 PointBase Console

P
R

O
D

U
C

T

R
E

V
I

E
W

41JANUARY 2000

Java COM

WRITTEN BY
TIM MOYLE

Writing XML-Friendly Java Documentation
J A V A & X M L

I
t’s there in every how-to-learn-Java book you pick up, right in
the first chapter: a brief section about documenting your
Java code. Like any good programmer, you probably flipped
through those pages pretty quickly and said,“I’ll get back to
this later.” But you never did, did you? No. Instead you
plunged right into writing cute little applets and then bigger
applications and pretty soon you were a Java guru. Docu-
mentation was never part of the deal.

The millennium is here, and it’s time to get thinking about documentation again

Java COM

42 JANUARY 2000

It’s time for you to get back to thinking
about Java documentation. Recent
trends in the Java marketplace are mak-
ing Java documentation more and more
necessary. The rise in demand for appli-
cation servers and third-party Enter-
prise JavaBeans means that there will be
a lot of developers working with code
that they didn’t write themselves. If the
primary benefit of using EJBs is a reduc-
tion in development time, then a lack of
quality Java documentation practically
eliminates that advantage.

Another reason that Java documenta-
tion is so important is the volatility of
the current job market. The accelerated
hiring and high turnover in high-tech
companies means that the project
you’re working on now will probably
pass through many hands – if it hasn’t
already – before it’s released. How else
will you communicate your intentions
to future developers except through
clear and concise documentation?

The engineers at Sun were quite
clever when they first released Java.
They incorporated the Javadoc stan-
dard, which generates class documenta-
tion from source code, into the Java
Development Kit from the very begin-
ning. For those of you who didn’t even
read the first chapter of your Java books,
Javadoc parses through your source
code and creates HTML files that docu-
ment every method, property and con-
structor of your classes. Even if you don’t
go beyond the basics of writing a Java
class, Javadoc will create a very simple
HTML file that outlines each of these
features. But the true strength of Javadoc
is what the developer puts into it. Using
special “tags,” developers can specify
the return types of methods, the excep-
tions that are thrown, references to
other Javadoc files and even the version
and author of the class itself.

A recent innovation makes Javadoc
even more powerful than it already is.
Leading vendors in the Java community
are adopting Flashline’s new JavaDox
standard for Java documentation. The
information that was once stored in
HTML is stored in the XML (eXtensible
Markup Language) format. The differ-
ence in the results is dramatic. I’ve
included two different representations
of the same method, Integer.parseInt-
(Strings). The HTML format (Listing 1),
while easily viewable in a Web browser,
is practically unreadable in its source.
The tags don’t convey any information
besides how the data is to be formatted.
The XML (Listing 2) is concise and easy
to understand even if you don’t have
knowledge of the Document Type Defin-
ition (DTD) that defines the rules of cre-
ating a JavaDox file. The XML file can be
used for many different purposes
(including translating it into HTML files
with no noticeable difference to the end
user), while the HTML files are useful
only when viewed in a browser.

There are many other benefits to stor-
ing this information in XML. Developers
can search across packages, even from
different vendors, for the information
they need. One of the strengths of XML
is that it allows contextual searches.
Instead of just searching for any
instance of java.util.Vector, you can
specify that you’d like to find all meth-
ods that return java.util.Vector.

JavaDox also reduces the plentiful
number of HTML files that Javadoc cre-
ates into one XML file, which can be for-
matted in many different ways. XML
separates the content from the format,
which means that Java documentation
can be displayed in any conceivable
style, from HTML to Acrobat files to
PowerPoint presentations to anything
you can imagine.

Which leads us to the greatest strength of
XML storage: it’s nonproprietary. In these
days of foul-calling by the Department of
Justice, XML is truly the people’s tool. Any-
one can write an application that reads
XML files since it’s text-based and easily
readable. And with the abundance of XML
tools and class libraries, anyone can easily
create an XML-ready application.

This is what makes JavaDox exciting.
(Trust me on this.) Take me as an exam-
ple. I do almost all of my coding in Bor-
land’s JBuilder. Whenever I type the name
of a class followed by a period, a pop-up
box appears with a list of all properties
and methods that I have access to.
JBuilder does this through a combination
of introspection and simple code pars-
ing. But imagine a tool that can pull up
not only a list of available methods and
properties, but also brief descriptions,
sample usage and references to other
resources. You’ll never again be stumped
by the arcane intricacies of Java I/O or
JNDI; it’ll all be at your fingertips.

With all the advantages that XML has
over HTML, it’s inevitable that Java docu-
mentation will continue to move toward
XML. That’s why it’s important now to write
XML-friendly Java documentation. Follow-
ing are some key points to remember:
• Document every possible feature that

you can. How many times have you
been working with a class, and you
find a method that needs a string as
one of its parameters? How many
times have you wondered what that
string was supposed to be? Is it a file-
name, a system property or the name
of your first pet? In Javadoc and Java-
Dox you can comment on the func-
tion of any feature of your class,
including parameters, return types,
overridden methods and deprecated
methods. Take advantage of this, and
make your fellow developers happy.

43JANUARY 2000

Java COM

SIC
www.sic21.com

• But don’t comment the obvious. Many
times a brief sentence is all the expla-
nation you need. If you’ve written
good, self-documenting code, then,
when a method’s signature needs a
string called fileName, you can
assume that developers will know that
what they need to pass is, in fact, a file
name. (Of course, if it isn’t, you’ve got
bigger problems.) In these situations
write comments that go beyond the
obvious; explain what sort of file your
method expects, or explain how this
method will manipulate the file.

• Follow Sun’s Javadoc-style conventions.
The first sentence of any description
should be brief, and should summarize
the functionality of the feature that it’s
documenting as succinctly as possible.
This is especially important in JavaDox,
because all descriptions are broken into
<briefDescription> and <fullDescrip-
tion> tags. Write in the third person
(“Gets the label”) as opposed to the sec-
ond person (“Get the label”). Begin
method descriptions with a verb phrase
as opposed to “This method....” For
additional style conventions visit http:/
/java.sun.com/products/jdk/javadoc/
writingdoccomments.html.

• Remember that your documentation
may not always be displayed in a
browser. Javadoc allows you to embed
HTML in your source code. To make
your documentation truly XML-
friendly, you should avoid this luxury.

Since XML formats such as JavaDox
can be easily repurposed, there’s no
telling where or in what format your
Java documentation will be displayed.
Your best bet is to use HTML sparing-
ly. For example, if you wish to refer to
an article published on a Web site, you
may have no option but to create a
hyperlink. But try to rethink how you
structure the information in your
comments and avoid using tables, lists
and images except when unavoidable.

• If you do use HTML, make sure that it’s
well formed. While most applications
of JavaDox don’t parse through sec-
tions where they expect HTML to be
embedded, it doesn’t hurt to make sure
that your HTML fits in with XML stan-
dards. In case you aren’t familiar with
XML, the most important thing about
any XML document is that it be well
formed. This means that each tag must
be nested correctly, and that all tags
must eventually close. In other words,
<I>Hello</I> is well formed,
while <I>Hey there</I> is not,
because the tags are nested incorrectly.
Closing all tags, however, can seem
somewhat counterintuitive, especially
with tags that you don’t usually think of
as needing to be closed. For example,
instead of <HR>, you should use either
<HR></HR> or <HR/> (the latter is
preferred) if you wish to put a horizon-
tal rule in your documentation. The
scope of this article prevents me from

going into this in detail, but an excel-
lent place to start if you want to learn
more about well-formed XML is
Elliotte Rusty Harold’s XML Bible (IDG
Books).

• Use descriptive HTML tags.
<code>...</code> is preferred over
... because
it’s closer to the concept of XML. Ele-
ment tags should be self-describing
and should reflect the meaning of the
data that they contain, as opposed to
the presentation.

• Don’t include non-Unicode text in
your source code. XML is only required
to support the Unicode character set,
and using any non-Unicode character
may cause unintentional havoc. Not
that you would anyway, right? You’d
be hard-pressed to come up with a
character that isn’t available in Uni-
code, but programmers are a crafty
bunch indeed.

This has been only a brief introduction
to XML-friendly Java documentation. For
more information on JavaDox, visit the
JavaDox Web site at www.componentreg-
istry.com/javadox. There you’ll find the
DTD that defines the structure of a valid
JavaDox XML file, sample stylesheets, the
JavaDox application that generates XML
from your Java source code and the doc-
umentation for JDK 1.2 in JavaDox.

Java COM

44 JANUARY 2000

<H3>parseInt</H3>
public static int parseInt
(String s)
throws

NumberFormatException
<DL>
<DD>
Parses the string argument as a
signed decimal integer. The characters
in the string must all be decimal digits,
except that the first character may be
an ASCII minus sign <code>'-'</code>
(<tt>'\u002d'</tt>) to indicate a
negative value. The resulting integer
value is returned, exactly as if the
argument and the radix 10 were given
as arguments to the
<CODE>
parseInt(java.lang.String, int)</CODE>
 method.
<DD>
<DL></DL>
</DD>
<DD>

<DL>
<DT>Parameters:
<DD><CODE>s</CODE> - a string.
<DT>Returns:
<DD>
the integer represented by the
argument in decimal.
<DT>Throws:
<DD>

NumberFormatException - if the
string does not contain a parsable
integer.
</DL>

</DD>
</DL>
<HR>

<method accessSpecifier="public" stat-
ic="true">

<methodName>parseInt</methodName>
<signature>(String)</signature>
<return>

<returnType>int</returnType>
<returnDescription>
the integer represented by the
argument in
decimal.

</returnDescription>
</return>
<description>

<briefDescription>
Parses the string argument as a
signed decimal integer.
</briefDescription>
<fullDescription>

...
</fullDescription>

</description>
<parameter>

<parameterType>
java.lang.String

</parameterType>
<parameterName>s</parameterName>

<description>
<briefDescription>

s - a string.
</briefDescription>
<fullDescription>

s - a string.
</fullDescription>

</description>
</parameter>
<exception>

<exceptionType>
NumberFormatException

</exceptionType>
<description>

<briefDescription>
NumberFormatException - if the
string does
not contain a parsable integer.

</briefDescription>
<fullDescription>

NumberFormatException - if the
string does
not contain a parsable integer.

</fullDescription>
</description>

</exception>
</method>

Listing 2

Listing 1

AUTHOR BIO
Tim Moyle is a software

developer and the
manager of developer

relations at Flashline.com.
He’s developed

Web-based e-commerce
solutions, including the

creation of the first
auction-based outsourcing

system for component
development. tim@flashline.com

J A V A & X M L

45JANUARY 2000

Java COM

Firano
www.fiorano.com

SilkPilot is a tool to test distributed
application components. The maker of
SilkPilot is Segue, a provider of testing
tools for the enterprise. Their family of
Silk products includes other testing
tools for various areas of Web, Java and
distributed development.

To test the functionality, I ran version
1.2.1 Professional. It utilizes a nonbun-
dled ORB to provide the CORBA 2.2 dis-
tributed environment that’s required.
VisiBroker 3.4 (or higher) and OrbixWeb
3.2 (or higher) are supported by the prod-
uct. ORBacus 3.1.3 (or higher) and BEA’s
WebLogic Enterprise are also supported,
but it seems to be incomplete in certain
places. SilkPilot is a Java 2 JFC application
that’s targeted toward Java 2, although
with certain modifications it’s possible to
use it to script JDK1.x-based clients. It
runs on Windows 95/98/NT, Solaris, HP
and different UNIX operating systems.

SilkPilot is a well-done implementation of this
simple idea: the way to test distributed objects is
to call them in a distributed fashion and to save
this interaction for later repeatability.

The operation of SilkPilot is as follows: it fills
the detailed distributed object information for
its UI from an IR (InterFace Repository, IFR in
the SilkPilot documentation). The user then
prepares test scenarios using the UI, and the
resulting test objects (“scripts”) are saved and
can be used independently from the SilkPilot
environment for (regression) testing. The abili-
ty to save “scripts” is the difference between the
Standard and the Professional versions, mak-
ing the former an expensive distributed “live”
object browser and tester.

SilkPilot requires an IR to query detailed
information on objects accessed, but it doesn’t
require access to IDL files. For every session
only one IR can be open, but this isn’t a major
limitation as one can have sessions sequential-
ly. If the vendor-supplied IR isn’t available (or

http://gliptak.homepage.com/

AUTHOR BIO
Gabor Liptak is an independent consultant with 10+ years

of industry experience. He is currently an architect of a
Java e-commerce project.

Segue Software
201 Spring St.
Lexington, MA 02421
Phone: 800 287-1329
www.segue.com/ads/corba
E-mail: info@segue.com

Pricing (North America):
SilkPilot Standard Edition: $995 per seat
SilkPilot Professional Edition: $3995 per seat

(prices do not include annual maintenance)

FIGURE 1 Main screen after opening IR and loading BankManager object

P
R

O
D

U
C

T

R
E

V
I

E
W

P
R

O
D

U
C

T

R
E

V
I

E
W

A tool for testing
distributed application
components

SilkPilot 1.2.1
from Segue Software

REVIEWED BY GABOR LIPTAK

FIGURE 2 Objects can be opened using IOR- or ORB-specific methods

Java COM

46 JANUARY 2000

isn’t compliant with the current CORBA standard, as I found is the case
with Orbix), a “local” IR supplied with SilkPilot can be utilized. In this
case the IDL files are required and need to be loaded into the “local” IR.

SilkPilot installed on my Windows NT 4.0 (SP5) machine without any
problems, although to evaluate it I had to apply for a “node-locked”
install key, required for permanent installations, which I found tedious.
I would have preferred a readily running evaluation version, which
doesn’t have this restriction. During install it found the JDK but not the
VisiBroker install on my machine.

The documentation included is detailed and provides hands-on
examples on functionality. Context-sensitive help is also provided, using
the same HTML documentation.

To demonstrate the available functionality, I prepared and loaded
everybody’s favorite Bank example, supplied with VisiBroker, into SilkPi-
lot. After opening the IR and loading the BankManager object, the main
screen looked like Figure 1.

The top left window lists all interfaces available in the currently
opened IR. Using the information from the IR, objects can be created
using the built-in “Data Composition” window (not shown) or opened
using IOR or ORB specific methods, as shown Figure 2.

Methods can be tested interactively against the objects opened. The
interface uses tabs nicely and also uses editable property sheets for dis-
playing and editing various data elements. When the user decides that a
method invocation is to be added to the current set, the invocation can
be saved using “Script” (available only in the Professional Edition).

After collecting all testing step(s) desired, the results can be saved into
a directory. That directory will contain all files necessary to compile and
run the testing steps prepared from the UI using command line. In my
case the directory contained the following files:

Client.java – generated testing code

Client.idl -- snapshot of IDL

Bank_AccountManager_BankManager@localhost_.ior – IOR saved

compile.bat – compile tests

run.bat – run tests

silkputil.jar – helper classes

The result of compiling and executing using the run.bat file is
text output:

name = gliptak

INVOKE Bank.AccountManager.open

result = IDL:Bank/Account:1.0[<0>]@localhost

The compile/run scripts generated are OS dependent, con-
taining Windows-specific scripting instructions and scripts
generated on a Windows system that won't run on UNIX sys-
tems and vice versa. The Java file generated can be compiled
and run on other host OSs (but the user needs to create their
own scripts to do so). I think the product would benefit if
allowed to run the generated script(s) (configuration?) on a
different host system.

There are advanced features for preparing more complex
test cases. Exceptions and all possible CORBA data types
(including primitive and user-defined types) are supported.
The UI is well integrated and drag-and-drop of simple and
complex data types is supported. However, I found it limiting
to be unable to transfer data between the host OS and Swing
using the clipboard.

As indicated above, SilkPilot is oriented toward the mod-
ule-level testing of CORBA distributed objects; considering
the tie-ins into CORBA, it may not be a tool your average
tester can use to maintain test scripts.

Segue provides an impressive list of customers and part-
ners on their site and, based on my brief evaluation, this is
no accident. Currently, SilkPilot is a unique product on the
marketplace, and it’s worth a closer look if you’re in need of
a component testing tool.

Employment
Ad

P
R

O
D

U
C

T

R
E

V
I

E
W

47JANUARY 2000

Java COM

This month in e-Java we’ll take a look
at some of the developments in Java that
have had an impact on Java-based e-
business. Specifically, we’ll examine the
segregation of Java into three separate
editions, the role of Java servlets and
JavaServer Pages and the impact of J2EE
in defining middle-tier business logic.

The Three Lives of Java
At JavaOne ’99 Sun made an important

announcement that defines the future
direction of the Java platform. The archi-
tecture for the platform was redefined,
aimed at making it simpler for software
developers, service providers and device
manufacturers to target specific markets.
The revised structure defines three edi-
tions of the platform:
• Java 2 Platform,Standard Edition (J2SE)
• Java 2 Platform, Enterprise Edition (J2EE)
• Java 2 Platform, Micro Edition (J2ME)

Each of the new Java platform editions
combines the Java Virtual Machine, the
Java programming language, core pack-
ages and optional packages. The new edi-
tions share many core packages and the
Java programming environment. Each
comes with its own set of core APIs to
enable development of business solu-
tions in its respective domain. Applica-
tions on all three editions may be devel-
oped using a common application pro-
gramming model. Those developed using
this model should be able to scale
upwardly from systems built with J2ME to
systems built with J2SE. With the Java 2
platform Sun defines what constitutes the
core Java technology platform for the
enterprise. A core set of APIs forms the
“least common denominator” of APIs
offered by the platform. For programmers
on virtually any Java platform – from
smart cards to the mainframe – that
means that 15 class libraries have been
declared “core,” and thus constitute the
soul of all Java technology. These are
applet, awt, beans, io, lang, math, net,
rmi, security, sql, text, util, accessibility,

swing and corba. The three editions of the
platform are described below.

JAVA 2 PLATFORM, MICRO EDITION
J2ME is a new edition of the Java 2 plat-

form targeted at consumer electronics
and embedded devices. It consists of a
virtual machine and a minimal layer of
APIs targeted at providing only enough
functionality to securely and safely down-
load Java classes to a device and configure
the Java environment. The rest of the Java
functionality needed to provide a com-
plete Java runtime environment for a par-
ticular kind of device is provided within
the context of an industry-defined profile.
J2ME comes in two flavors, called config-
urations, that are targeted at two broad
categories of devices:
• Devices with 128–512K of memory

available for the Java environment
and applications

• Devices with 512K+ of memory avail-
able for the Java environment and
applications

JAVA 2 PLATFORM, STANDARD EDITION
J2SE provides a complete, secure

foundation for building and deploying
network-centric enterprise applications
ranging from the PC desktop computer
to the workgroup server. It’s implement-
ed by the Java 2 Software Development
Kit (SDK), Standard Edition, and the Java
2 Runtime Environment, Standard Edi-
tion. J2SE includes the following APIs:
• Java Foundation Classes (JFC) and Swing
• Pluggable Look & Feel (PLAF)
• Accessibility
• Drag and drop
• Security
• Java Interface Definition Language

(Java IDL)
• JDBC
• Remote Method Invocation (RMI)
• Java 2D
• The Collections Framework

JAVA 2 PLATFORM, ENTERPRISE EDITION
J2EE enhances J2SE to server-side,

middle-tier applications that address

multitier enterprise solutions. It enables
solutions for developing, deploying and
managing multitier server-centric appli-
cations. J2EE is a unified platform for
building, deploying and managing
enterprise-class software applications
that have the ability to run on a variety
of computing environments. The prima-
ry technologies in J2EE (in addition to
the J2SE technologies) are:
• Enterprise JavaBeans (EJB)
• Java Servlets and JavaServer Pages (JSP)
• Java Naming and Directory Interface

(JNDI)
• Java Transaction API (JTA)
• CORBA
• JDBC

EJB technology, the basis of J2EE, pro-
vides a scalable architecture for executing
business logic in a distributed computing
environment. J2EE combines the EJB
component architecture with other enter-
prise technologies to offer solutions on
the Java platform for development and
deployment of server-side applications.

• • •
If we cut through the entire gamut of

Java technologies that hold the promise
of enabling the development of enter-
prise-wide business solutions, Java
servlets (and JSPs), RMI and Enterprise
JavaBeans emerge at the core of these
technologies.

Java Servlets and JavaServer Pages
Java servlets play the role of access

mechanisms to middle-tier services.
They are a specific enhancement to the
world of enterprise computing, not a
Java layer on top of an existing service.
The popularity of Java servlets is based
on the premise that most enterprises are
taking advantage of the thin-client envi-
ronment made possible by the ubiqui-
tous acceptance of the worldwide Web
and the Internet. Under this model the
Web server becomes enterprise middle-
ware and is responsible for running
applications for clients. Servlets are

With the advent of J2EE, Java has firmly ensconced itself in the middle tier

T
his month the Java platform segues into the new millennium.These are very exciting times; 1999 was
a crucial year in the acceptance of Java in the enterprise as one of the key drivers of e-business. It’s
ironic that applets – the components of Java that helped propel it into the mainstream of Internet
applications – currently occupy a backseat in the vehicle that propels Java into the 21st century. Dur-
ing the year gone by, the focus was on server-side Java, as predicted last year by several industry pun-
dits – more precisely, on Java in the middle tiers of distributed computing.

E - J A V A

Java in the Middle Tier

48 JANUARY 2000

Java COM

WRITTEN BY
AJIT SAGAR

49JANUARY 2000

Java COM

MetaMata
www.metamata.com

AUTHOR BIO
Ajit Sagar is a member of

the technical staff of
i2Technologies in Dallas,

Texas, focusing on
Web-based e-commerce

applications and
architectures. A

Sun-certified Java pro-
grammer with nine years

of programming
experience, including

three in Java, Ajit holds an
MS in computer science

and a BS in
electrical engineering.

E - J A V A

Java COM

50 JANUARY 2000

used primarily by Web servers as Java-
based replacements for CGI scripts.
They can access server-side APIs in a
variety of ways – by sending and receiv-
ing e-mail, invoking methods on remote
objects using RMI or CORBA, or by
obtaining directory information via
JNDI and using that information to
invoke business services offered by EJBs.

JavaServer Pages are based on servlet
technology and are currently poised as
one of the most significant elements of
dynamic content presentation in e-
business applications. JSPs combine
markup (HTML or XML) languages with
blocks of Java code to produce dynamic
Web pages. Each of these pages is com-
piled into a servlet by the JSP engine the
first time it’s requested. Subsequent
requests for the page use the compiled
servlet. JSPs provide a variety of ways to
talk to Java classes, servlets, applets and
the Web server. Using JSPs, an applica-
tion developer can split the functionali-
ty of a Web application into components
with well-defined public interfaces.

These components are contained in a
single page. JSPs also have mechanisms
that allow the application to leverage
JavaBean components so as to present
different data views to the Web browser.
They facilitate the creation of front-end
business components such as shopping
carts and user profile managers.

Enterprise JavaBeans
Enterprise Java Beans form the core of

Java enterprise computing. EJB defines
how server-side components are written
and provides standard contracts between
components and application servers that
manage them. EJB promotes the devel-
opment of a component marketplace in
the enterprise, where vendors can sell
reusable components that can be pur-
chased to help solve business problems.
Thus EJBs offer business services in the
form of APIs that may be accessed via a
distributed object framework. This
framework is offered by Java in the form
of RMI.

The idea behind EJBs is to enable the
creation of business services in the middle
tier. The business objects defined via EJBs
are responsible for accessing data from the
end-server tier, processing it and making
the results available to the presentation tier
via RMI. If the presentation tier is accessed
via a Web browser, servlets and JSPs are
used to make the results available in
HTML (or XML) format via a Web server.

Trading Places
When Java first emerged as a popular

technology, its scope was more or less
limited to the client. Client-side tech-
nologies were used to access server-side
services via different protocols, depend-
ing on the programming environment.
With the advent of J2EE, Java has firmly
ensconced itself in the middle tier. In the
new millennium we can hope to see fur-
ther penetration of Java in various tiers
of the enterprise.

E-Book
Java Application Frameworks

by Darren Govoni
John Wiley & Sons

This month’s e-book covers an important topic that relates to industry-
strength Java development. The author offers some insight into how to
design and use frameworks in Java applications – basically, sound advice
and guidelines on design reuse, design patterns and object frameworks. A
fair amount of code is used to support the textual descriptions.
The two Java frameworks Govoni covers are Java
Foundation Class (JFC/Swing) and the InfoBus. In
my opinion, InfoBus is a good framework to study
from an academic perspective. From a practical
standpoint, however, it’s one of the Java technologies
that’s being phased out (Lotus recently announced that
eSuite is being discontinued). All in all, though, it’s a
good book for readers who are new to frameworks and
design patterns in the world of Java.

Chapters 1 and 2 introduce the reader to framework con-
cepts. Chapter 1 presents general framework concepts,
guidelines for design and implementation, code reuse and
object design – a useful chapter for folks who need an intro-
duction to object frameworks. The concepts are well explained,
design models are covered well and the chapter contains some simple
examples in Java that supplement the author’s discussion. Except for the
examples, this chapter should be useful to both Java and non-Java readers.
Chapter 2 focuses on Java-specific frameworks. I thought some of the Java
concepts explained were too basic, but they may be useful to newcomers to
Java. The author uses the Java Collections Framework as the main exam-
ple in this chapter. Again, this was a basic introduction to the Collections
Framework. I found the latter half of the chapter more useful. The author
walks the reader through an exercise in framework development in a Java
environment.

Eight design patterns – Factory, Abstract Factory, Adapter, Bridge,
Builder, Observer, Model/View and Iterator – are discussed in detail in
Chapter 3, with diagrams and examples. The author offers useful tips on
when and where to apply design patterns. The chapter refers to Gamma
et al.’s classic book to set the stage. Although Govoni doesn’t offer an
exhaustive list of prevalent design patterns, this is a decent chapter that
introduces the reader to some of the main ones.

Chapter 4 covers JavaBeans. If you’ve read about JavaBeans and have
worked with them, there’s not much to learn from this chapter. If not, this
provides a brief overview. Chapter 5 offers coverage of two Java frame-

works – JFC and InfoBus. I found the chapter to be well orga-
nized, with detailed coverage on Java component frame-
works. The Model/View and Listener patterns are revisited
in the context of these frameworks.

Chapter 6 introduces the reader to Composite Foun-
dation Architecture (CFA), a methodology and architec-
ture for developing frameworks, components and sub-
systems within a larger complex system. The chapter
offers decent coverage of architectural framework
concepts and framework abstraction. The composite
foundation architecture is described in relation to
Java framework aspects such as packages and
directories. A loan application example is used to
illustrate the implementation of the CFA. Guide-

lines on modularity, state management, reuse and extensibili-
ty are also given.

Chapters 7 and 8 focus on distributed application architectures in Java.
Popular component models such as RMI and CORBA are covered. The
responsibilities of the different tiers of a distributed application are dis-
cussed. Last, enterprise frameworks such as EJB and CORBA are exam-
ined along with interesting perspectives on distributed frameworks and
designs based on distributed systems.

If you’re looking for depth in Java APIs and component model discus-
sions, this may not be the right book for you. However, if you want a book
that will help you design better applications, this is a good one to add to
your library.

book review

ajit@sys-con.com

51JANUARY 2000

Java COM

Pramati
www.pramati.com/j2ee.htm

Java COM

52 JANUARY 2000

Object
www.objectdes

Design
sign.com/javlin

53JANUARY 2000

Java COM

WRITTEN BY
JASON WESTRA

Securing Your Company Data with EJBs

E J B H O M E

O
ften we think of security as a burden, a time-consuming
process that requires us to jump through hoops just to
get through a doorway or view a Web page on the com-
pany intranet. My first real appreciation for (or frustra-
tion with) security came a number of years ago. I was a
PowerBuilder consultant in Minneapolis, helping the Fed-
eral Reserve Bank build its first-ever client/server appli-
cation. Each day it was a hassle just to get past the secu-
rity desk in the lobby, and the bombing of the World
Trade Center in New York that year did nothing to ease
the pain.

Harness the power of EJB security to protect company data from prying eyes

Java COM

54 JANUARY 2000

My next interesting security experi-
ence came last year on a project for the
Department of Defense in Colorado
Springs, Colorado. Our team was build-
ing a solution for the DOD in reply to a
request for proposal they had made to
update NORAD’s command and control
operations with new, distributed, com-
ponent-based technologies.

On my first day at the site I was
escorted to what looked like a bank
vault, and I thought to myself, “Is this
déjà vu or what”? A metal door about 1.5
feet thick stood between the outside
world and me for the next three months.
In fact, the development center was
actually inside a SCIF (Secret Compart-
mental Information Facility). The gov-
ernment has several levels of security –
one you’re probably familiar with is Top
Secret. Yes, Top Secret is real, not just
something out of “Mission Impossible”
or the “X-Files.” Information considered
even more sensitive than Top Secret is
held within SCIFs, where neither cell
phones nor pagers are reliable, if they
work at all. I was told the walls played
music from the inside out to defend
against listening devices. I couldn’t resist
imagining men in an unmarked van out-
side getting an earful of Bob Marley’s
“Buffalo Soldier” as they tried to listen in
on our design sessions!

Security of information is important
not only for the government, but also for
companies seeking to protect sensitive
information about their business or
users. Security can take many forms:
swipe cards, retinal scanning or just Bob
playing reggae in the walls of your office.
However, securing your data over the

Internet and intranet is another story.
There was no question then that Enter-
prise JavaBeans, targeted at enterprise
solutions, had to include support for
security in its specification. This month
I’ll provide an overview of EJB security
and how it relates to keeping your cor-
porate data safe.

EJB Security Model
EJB is an open architecture capable of

integrating with existing security stan-
dards while sheltering components from
advances in technology. With this in mind
it’s understandable that the EJB security
model is both simple and flexible.

The basic concept surrounding EJB
security is role-based access control of
corporate data. Enterprise JavaBeans
isn’t as concerned about communica-
tions integrity as SSL protocol is, nor is
EJB worried about playing a little too
boisterously in the “sandbox”! Instead,
enterprise beans are believed to be
trusted components that are focused on
data security.

EJB provides role-based security via
ACLs (access control lists) and princi-
pals. ACLs are named list entries that are
used to control permission to server-side
resources. For instance, an ACL may be
created to grant system administrators
permission to deploy new components
into an EJB server or to manage what
roles at a bank can perform monetary
transfers between member accounts.
ACLs typically contain a set of permis-
sions that are associated with the princi-
pal(s) on the list. A principal simply
refers to a user of the resource – a human

user, an application or a component
within an application. Principals can be
members of more than one ACL. It’s left
to the EJB server vendor to provide an
implementation of role-based security.
Each user may have different rights, or
they may be grouped together into ACLs
with similar permissions.

The EJB security model is flexible. Its
component model provides container-
managed security enforcement of the
context of each call to an enterprise
bean. As with other container-managed
features such as persistence and trans-
action management, security permis-
sions never have to be hard-coded by
the bean provider. Instead, they can be
finalized during deployment of the
bean, allowing a more flexible approach
to development and reusability. If a fine
level of security is needed in the bean,
javax.ejb.EJBContext interface provides
a means for it to question the caller’s
identity itself.

How Does It Work?
This month let’s take a look at how

EJB’s role-based security works. I’ll save
coverage of hard-coded security checks
against the principal in EJBContext for a
later article. To begin with, there are two
aspects of security to define for an
enterprise bean: method-level security
policies and bean identity.

METHOD-LEVEL SECURITY POLICY
During bean deployment, an Access-

ControlEntry for an enterprise bean is
defined for each individual method and
one may be made for an entire bean,

55JANUARY 2000

Java COM

Object Switch
www.objectswitch.com/idc35/

E J B H O M E

Java COM

56 JANUARY 2000

which applies to all methods without
individual security policies. This entry
associates a role to an entry in a previ-
ously defined ACL of who is allowed to
access the bean’s method(s).

BEAN IDENTITY
A bean instance has an identity,

referred to as the “RunAs” security iden-
tity, associated with it at all times. This
identity is determined at deployment
and can be one of the following:

CLIENT_IDENTITY: Use the identity
(principal) of the caller.
SYSTEM_IDENTITY: Use a predefined
global system identity
SPECIFIED_IDENTITY: Use the identity
specified by the RunAsIdentity security
attribute.

When a bean attempts to access a sys-
tem resource or another enterprise
bean, this RunAs identity is associated
with the method invocation (see below).

EJB Security in Action
When an operation on an enterprise

bean component is invoked through its
remote interface or its home interface,
an EJBContext object is associated with

the client’s call and passed to the bean’s
container. The container uses the con-
text to retrieve the caller’s identity, or
principal, and performs a lookup
against the bean method’s ACL to see if a
corresponding access control entry
exists for the client.

If an entry exists, the bean method is
invoked. Also, the “RunAs” security
identity of the bean is used for any
future calls from the bean to system
resources or other beans.

If an entry doesn’t exist, permission to
execute the bean method is denied, and
a java.security.Exception is thrown. At
this level it’s the responsibility of the EJB
Container to audit an attempted breach
of security in the system. This detail is
noted in 15.6.10 of the specification, but
has yet to be formalized.

EJB Bank Security Scenario
This scenario represents a bank that

contains sensitive account data for its
members. Each enterprise bean in our
example (UserSessionBean and Account-
EntityBean) is protected through EJB’s
role-based security model. For instance, a
user in the role of Bank Teller may have
read-and-write access privileges to Ac-
count beans, while other roles such as

Loan Officer may only view account
details but not make any modifications to
the account. Users log in under a particu-
lar role and assume that role for all subse-
quent interactions with the system.

Figure 1 illustrates the security enforce-
ment occurring in the system when a user
tries to access an account. A Loan Officer,
User A, invokes a UserSessionBean to
view an account at the bank. A context
containing his or her identity is passed
along with the request to the EJB Contain-
er. When the container intercepts the
method call, the identity of the caller is
taken from the context and compared to
the ACL entries for the bean’s viewAc-
count() method. For our example let’s
assume the security check is successful.
Next, the UserSessionBean delegates to
the AccountEntityBean to actually get the
account information.

Figure 2 illustrates how the “RunAs”
characteristics of a bean are forwarded
to other resources and enterprise beans.
In this scenario the RunAs identity is set
to CLIENT_IDENTITY and User A’s iden-
tity is passed onto the AccountEntity-
Bean’s EJB Container where it is verified
once again for permission to invoke the
getAccountDetails() method. Because
CLIENT_IDENTITY was chosen during
deployment of the UserSessionBean,
this bean instance actually assumes the
identity of the original caller.

The EJB security model, as demon-
strated in this scenario, is simple, yet
effective at controlling the access to sen-
sitive bank account information. The
permissions were granted in a compo-
nent-based fashion. Access control
entries for each method were deter-
mined at deployment of the enterprise
beans, and no hard-coded security
checks were needed. This fosters flexi-
bility in deploying the bean into new
environments, encouraging reusability
of the component.

Conclusion
Enterprise JavaBeans provides a sim-

ple yet effective and flexible model for
enforcing role-based security in your
applications. EJB eases the implementa-
tion of security requirements by provid-
ing you with the ability (1) to graphically
define security permissions at bean
deployment, and (2) to control access to
data at the method level of the enter-
prise bean. When designing security for
your next EJB application, I recommend
taking a close look at harnessing the
power of EJB security to save precious
development time and protect company
data from prying eyes.

EJB Container

UserSessionBean
viewAccount()

Loan Officer

ACL for
viewAccount()

Invoke viewAccount()
on the

UserSessionBean

EJBContext “Loan Offic
er

”

User A
“Loan Officer”

FIGURE 1 EJB security model

EJB Container

AccountEntityBean
getAccountDetails(...)

Loan Officer
Invoke getAccountDetails()

on AccountEntityBean
with RunAsMode =
CLIENT_IDENTITY

EJBContext “Loan Offic
er

”UserSessionBean

ACL for
getAccountDetails()

FIGURE 2 Propagated user identity

jwestra@uswestmail.net

AUTHOR BIO
Jason Westra is a

managing partner with
Verge Technologies Group,
Inc., a Java consulting firm
specializing in Enterprise

JavaBeans solutions.

57JANUARY 2000

Java COM

New Atlanta
www.newatlanta.com/

Java COM

58 JANUARY 2000

Java programs can use the JDBC API to access relation-

al databases, thereby cleanly separating the database sys-

tem from the application. This approach holds the promise

of cross-database portability, i.e., “write once, run on any

database.” In practice, several stumbling blocks stand in

the way of fulfilling this promise.

This article shows examples of these stumbling blocks so

you can see the common pattern of development. Drawing

on this pattern, I’ll develop a roadmap you can use to write

applications that can work around these stumbling blocks.

Finally, I’ll demonstrate how the roadmap can be applied

to build a portable application.

S
TU

M
B

LIN
G

Cross-Database
Portability
withJDBC

BLOCKS

J D J F E A T U R E

ARO
UND

WORKING

WRITTEN BY SESH VENUGOPAL

59JANUARY 2000

Java COM

Breakdown of Portability
Three general situations in which the portability of code breaks down

are using SQL escape syntax, translating external data types to database-
specific types, and executing positioned updates on the rows of a table.
These examples arise out of my experiments with writing JDBC-based
applications using an organization schema with two tables, EMP and
DEPT. These schemas were implemented in two different database sys-
tems, MS Access 97 and Oracle8 Personal Edition, both running on a Win-
dows NT 4.0 workstation. The schemas for the respective database sys-
tems are shown in Figure 1. Note that the structure of the EMP and DEPT

tables are the same in both databases, but the respective
native data types of the columns are different, as

shown in the box.
To drive the Access database, I used a

Windows-supplied Microsoft Access
driver and the JDBC-ODBC bridge

from Sun (which came with JDK
1.1) as the JDBC driver of

choice. For Oracle I used
the JDBC OCI8 driver that
supported JDBC 1.22.

SITUATION 1: SQL ESCAPE SYNTAX
The JDBC API is imple-

mented in the java.sql
package. A java.sql.Statement

instance is used to execute sim-
ple SQL statements. JDBC speci-

fies a so-called SQL escape syntax
that may be used in Statement

instances for various tasks such as
pattern matching of strings, execut-

ing database-specific scalar func-
tions, manipulating date and

time values, calling stored
procedures and executing

outer joins. For each of
these tasks JDBC speci-

fies a syntax that’s
used by the devel-

oper, and the
JDBC driver is
responsible for
translating this

into database-
specific code. Fol-

lowing is an outer
join example that

doesn’t port.
• Outer join: Consider

the data in the EMP
and DEPT tables shown

in Figure 2 (only the relevant
columns are shown).

The following join operation would produce the result
shown in Figure 3:

select dname, ename from dept d, emp e

where d.deptno = e.deptno

Note that the department OPERATIONS (DEPTNO = 40) doesn’t
appear in the resulting table because none of the entries in the EMP
table has a DEPTNO value of 40. But what if you want to see every
department represented in the result, even if it doesn’t have any entries
in EMP? You need to execute an outer join.

An outer join preserves unmatched rows in either the left table (left
outer join) or the right table (right outer join). JDBC prescribes a SQL
escape syntax for outer joins that looks like this:

{ oj outer-join}

where the keyword oj stands for outer join, and outer-join is of the form:

table left outer join { table | outer-join} on search-condition

If you want to preserve all the unmatched departments in the exam-
ple, you can issue a left outer join by specifying the tables in order DEPT
followed by EMP:

select dname, ename from

{ oj dept d left outer join emp e on d.deptno = e.deptno }

This works perfectly well with Access, but not with Oracle. The OCI8
driver doesn’t support the oj escape syntax. Instead, you need to use the
following equivalent SQL statement:

select dname, ename from dept d, emp e

where d.deptno = e..deptno (+)

in which the (+) at the end of the statement stands for outer join.

The result of this outer join is the table in Figure 4.

SITUATION 2: DATATYPE TRANSLATION
A large part of the work in making JDBC applications portable

involves matching external data types to native database types (and vice
versa). This matching is done in two steps: (1) the external type is
matched to a JDBC SQL type (defined as a constant in the java.sql.Types
class), and (2) the JDBC SQL type is translated by the JDBC driver to the
native database type.

The next example shows how the table of a database can be populat-
ed. A naïve approach hard-codes datatype-specific information in the
program, thereby making it nonportable. Following this I’ll show a
portable alternative that illustrates another stumbling block.

EMP TABLE

DEPT TABLE

EMPNO ENAME JOB

DEPTNO DNAME LOC

MGR SAL COMM DEPTNOHIREDATE

MS ACCESS
text

date/time

number

ORACLE
varchar2

date

number

FIGURE 1 Organization schema for MS Access 97 and Oracle8

EMP

ENAME

WARD
CLARK
SCOTT

DEPTNO

30
10
20

DEPT

DEPTNO

10
20
30
40

DNAME

ACCOUNTING
RESEARCH

SALES
OPERATIONS

FIGURE 2 Sample data in EMP and DEPTNO tables

Java COM

60 JANUARY 2000

• Example: Inserting data using PreparedStatement: A PreparedState-
ment instance is used to prepare and execute precompiled SQL state-
ments. Suppose you want to insert rows of data in the table EMP. The
pattern of the SQL statement to insert a row is always the same; it’s
only the values of the columns that change with every new row. To
start with, you construct a PreparedStatement instance as follows:

PreparedStatement ps = conn.prepareStatement(“insert into emp “ +

“(empno, ename, job, mgr, hiredate, sal, comm, deptno) “ +

“values (?, ?, ?, ?, ?, ?, ?, ?)”;

The variable conn refers to the database connection. The Prepared-
Statement instance, ps, is parametrized with the values of the columns,
indicated by the question marks. Each parameter is matched with a
value before executing the prepared statement for some row. The follow-
ing code segment shows how the empno column value is filled:

String next = st.nextToken();

if (next.equals(“null”)) ps.setNull(1, Types.SMALLINT);

else ps.setShort(1, (short)Integer.parseInt(next));

The first line reads an input token (using a StringTokenizer instance st
to parse each input line) as a String object. The second line checks
whether this token spells null, which indicates that the input does not
have a value for this column. In this case a special setNull method is
invoked on ps. The first argument to this method indicates the parameter
position in the prepared statement (empno is the first); the second argu-
ment indicates the JDBC SQL type of the intended value. As mentioned
earlier, the class java.sql.Types defines a set of constants corresponding to
various SQL types, and the constant java.sql.Types.SMALLINT stands for
the SQL type SMALLINT.

For every column in the EMP table, these three lines of code need to
be implemented with appropriate modification in data types. There are
a couple of serious drawbacks to this approach. One is that the program
becomes ungainly and hard to maintain. Another is that all data types
are exposed to the developer, so if a column type changes, or this pro-
gram is ported to a different database, this code must be rewritten.

A better alternative postpones the datatype translation to runtime,
thereby making the code portable. This alternative makes use of the Pre-
paredStatement method setObject:

ps.setObject(1, next);

used instead of

ps.setShort(1, (short)Integer.parseInt(next));

The second argument, next, is a String instance that’s automatically
translated by the JDBC driver to the required database type, which in this
case is a small integer. There is no coding of any datatype information.
This statement can be set in a loop, using the loop index to control the
first argument, which is the position of the parameter in the Prepared-
Statement instance.

If one or more of the column values is null, a little more work is
required. The statement would then be written as:

ps.setNull(1, <SQL type>)

To maintain the datatype independence of the code to make it
portable, the SQL type of the column value isn’t coded directly here.
Instead, it’s discovered at runtime using the java.sql.DatabaseMetaData
interface, and then plugged into the above statement.

The DatabaseMetaData interface provides metadata information for a
database. Metadata is data that describes data. For instance, the EMP
table contains employee information. This is data. Metadata would con-
tain information on things like the number of columns in the table, the
data types of these columns, whether a column can have null values, and
so on. This is data about data.

The DatabaseMetaData interface provides methods that can be called
to find out various metadata information about a database. For our exam-
ple above, we need to find the data types of the columns of EMP so we can
plug that information into the PreparedStatement setNull method call.

This alternative works with the MS Access database, but not with the
Oracle database – the OCI8 driver refuses to pass the setObject invoca-
tion because it’s unable to translate the String external type to the
required database type.

SITUATION 3: POSITIONED UPDATE
When a SQL query is executed in JDBC, it returns a result set that rep-

resents the resulting table, consisting of a sequence of rows. A cursor is
used to traverse the rows of a result set. The term positioned update
refers to updating a database row referred to by the current position of
the result set cursor. The following steps need to be taken to effect posi-
tioned updates from a result set:
1. Execute a SELECT FOR UPDATE statement. At the very least this will

lock the rows of the table in the result set against other concurrent
transactions. For this step to work, the database must support SELECT
FOR UPDATE.

2. Get the cursor name of the result set. This will be used to reference the
current row at the time of the update.

3. Construct a prepared statement to update a row, using the
UPDATE…WHERE CURRENT OF <cursor name> form, with input
parameters for the updated columns as well as for the cursor. For this
to work, the database must support positioned update.

4. Traverse the result set, and for every row to be updated execute the pre-
pared statement after setting all the input parameter values. The cursor
name would refer to the row currently being referenced in the result set.

Now I’ll show a pure JDBC code template using the above steps, writ-
ten for full portability. This time around, the stumbling block to porta-
bility is even more severe.

• Example: JDBC template and Oracle specifics: Whether a database
supports the required SELECT FOR UPDATE and UPDATE...WHERE
statements described above can be discovered by using the Data-
baseMetaData interface. Assuming a database does in fact support the
required functionality, the code in Listing 1 serves as a template for
updating all employee names in the EMP table to lower case.

MS Access doesn’t support the required database functionality for posi-
tioned update. Oracle supports it, but the OCI8 driver doesn’t implement
the JDBC specification of cursor name. Instead, a completely different
solution is adopted. The driver provides a ROWID, which is equivalent to
the cursor name. A ROWID is added as a pseudocolumn to a query:

select name, rowid from emp

It may be retrieved using the ResultSet getString method:

String rowid = rset.getString(2);

It may be set as a parameter using the PreparedStatement setString
method:

ps.setString(2, rowid)

ENAME
WARD
CLARK
SCOTT

DNAME
SALES

ACCOUNTING
RESEARCH

FIGURE 3 Result of join

DNAME
ACCOUNTING
RESEARCH

SALES
OPERATIONS

ENAME
CLARK
SCOTT
WARD
null

FIGURE 4 Result of outer join

61JANUARY 2000

Java COM

IAM
www.iamx.com

Java COM

62 JANUARY 2000

The JDBC-compliant template code shown in Listing 1 can be
reworked for Oracle, using ROWID, at the cost of giving up portability.

Roadmap for Workarounds
The examples given here point to a common factor that contributes to

the stumbling blocks: the JDBC driver. A JDBC driver implements the
JDBC specification for a specific database system. For any given data-
base system there is generally a wide choice of drivers available, includ-
ing those from the database system vendor as well as third-party ven-
dors. These drivers may differ in various respects, especially in the
degree to which they implement the JDBC specification. Choosing an
inappropriate driver can force the developer to write database-specific
code in the application, thereby giving up portability.

A related common issue that is apparent from the examples is that
even if the driver is appropriate for the task at hand, some database-spe-
cific information may have to be factored into the application. A naïve
approach to this, which is to hard-code the required information into
the application, makes the application nonportable. However, it’s often
possible to discover this information at runtime instead by using the
DatabaseMetaData interface, thereby maintaining the portability of the
application.

These observations suggest a two-point roadmap to work around the
stumbling blocks:

• Point 1: Implement a “back-end” class that can load any given driver
at runtime from a list of candidate drivers. This can be used not only
to choose among a set of drivers for a single database, but among dri-
vers for different databases if the application is ported to a different
database. Figure 5 illustrates this point.

• Point 2: Separate metadata discovery from other code by implement-
ing one or more classes that can serve to discover metadata at run-
time. Depending on what kind of metadata needs to be discovered,
you could design a suite of discovery classes that could be loaded
(“plugged in”) at runtime as required. Figure 6 illustrates this point.

Implementing the Roadmap
I’ll now use the roadmap to sketch the process of building an applica-

tion that populates the EMP table with data from a text file. Recall that a
row of data may be inserted into the table by using a PreparedStatement
instance, which in turn requires that the type of each column of EMP be
discovered at runtime using the DatabaseMetaData interface.

Following Point 1 of the roadmap, the DriverLoader class is implement-
ed, which loads either the OCI8 driver for Oracle8 or the JDBC-ODBC
bridge for MS Access, as required at runtime. Other drivers for the existing
databases, as well as drivers for other databases, may be added as needed.

Following Point 2 of the roadmap, the application is divided into three
classes. One of these, TableColumns, implements the metadata discov-
ery process. In this case it’s the discovery of column types for the table
EMP. Another class, TableMediator, uses this metadata and interacts
with a third class, TableBuilder, that reads data from the input text file
and sends it down the chain of classes to the database.

This chain of classes is illustrated in Figure 7.

Conclusion
The JDBC driver is the most critical piece in any Java database appli-

cation. The driver must be picked with care, taking into account the
architecture of the application, the extent to which the driver imple-
ments the JDBC specification, and the performance of the driver for var-
ious connection and database access operations.

I picked this specific set of three stumbling blocks for illustration sim-
ply because they provide a window into very different ways in which
JDBC may be used in a database application. These examples and the
workarounds demonstrated point to a general way of structuring a data-
base application for cross-database portability. Specific refinements to
this general approach can be adopted based on special requirements of
the applications and the architecture; there’s a lot of room for maneu-
vering within the proposed roadmap.

AUTHOR BIO
Sesh Venugopal holds a Ph.D. in computer science from Rutgers University. He runs his own IT and educa-
tion consulting company, Intecus, Inc. (www.intecus.com), specializing in Web-based systems using the Java
platform. Sesh is the author of a textbook, Data Structures: An Object-Oriented Approach with Java, also
online at www.intecus.com/bookpage.html.

se

lec
t a

dr
ive

r for A

Application-Specific
Classes

DriverLoader

Driver for
database A

Driver for
database B

select a

driver for B

FIGURE 5 Roadmap Point 1 – back-end driver loader

se

lec
t a

dr
ive

r for A

Application-Specific
Classes

DriverLoader

Driver for
database A

Driver for
database B

select a

driver for B

Metadata
usage

Metadata
discovery

FIGURE 6 Roadmap Point 2 – separate metadata discovery from
application-specific code

se
lec

t a

d
riv

er
for A

Table
Columns

DriverLoader

Driver for
database A

Driver for
database B

select a

d
river for B

Discovers
information

about the
columns of

a given
databse

table
at runtime

Table
Mediator

Sets up the
prepared

statements
with the
column

types
discoverd

by
TableColumns

Table
Builder

Reads table
data from

file and uses
TableMediator

to populate
the table

FIGURE 7 Implementing the roadmap: populating the EMP table with
data from a text file

ResultSet rset = stmt.executeQuery("select ename from emp
for update");

String cursor = rset.getCursorName();
PreparedStatement ps = conn.prepareStatement("update emp

set ename = ? " +

"where current of ?");
while (rset.next()) {

String ename = rset.getString(1);
ps.getString(1, ename.toLowerCase());
ps.setString(2, cursor);
ps.executeUpdate();

Listing 1: Pure JDBC Template for Positioned Update

sesh@intecus.com

63JANUARY 2000

Java COM

Elixir
www.elixirtech.com/

WRITTEN BY
SIMON PHIPPS

Parallel Worlds

J A V A & X M L

I
n the last few years the focus in computing has gradually
moved away from the raw technology to settle on the total
cost of ownership (tco) for a solution. What makes up the
tco? That’s hard to say, and everyone has a different answer,
which usually depends on what they find easiest to fix. Most
people agree that the tco isn’t simply the sum of the prices
of the parts that make the system, although it comes from
those initially. A much greater cost arises from the cost of
supporting the system in context.

Why Java and XML technologies will succeed

Java COM

64 JANUARY 2000

A popular approach to reducing tco
has been to try to centralize the admin-
istration of individual systems and/or
the client desktop, yet that’s only part of
the answer. It’s good to keep the amount
of travel to a minimum, but what actual-
ly causes the administration to be need-
ed? The answer, of course, is change,
although not on its own. Change in iso-
lation would only necessitate work on
the change itself. But we all know that
making a change in one part of a system
results in support needs throughout the
system.

The typical computer system is often
heading toward “entropy death,” in
which ordered simplicity has tended
toward interconnected complexity.
While a cure for the symptom may be
central administration, the actual dis-

ease mandates avoidance of the com-
plex network of dependencies in the
first place. It’s this that Java technology
and XML start to address, by eliminating
the automatic codependency of sys-
tems, software and data.

A New World
The need for much of the support and

administration comes from the web of
dependencies woven by the software in
our computers. To bring back the sim-
plicity, we need to cut the dependencies.
Where are they? There are several cate-
gories:
• Software to platform
• Software to data
• Software to software
• Platform to platform

Cutting the cord of these dependen-
cies isn’t easy, but the new world of com-
puting that’s been developing over the
last decade is finally coming to maturity
and making it possible.

Let’s first consider the computing
model we’ve been living with. When
computing was new, the choices were
easy to make. I could pick any one from
the limited range of computers, write
software to run on it and create file for-
mats to store the data in. Trouble was,
the software and data would work only
on that kind of computer, so when a dif-
ferent kind was used I had to use differ-
ent software, or if I used different soft-
ware on the same system I couldn’t use
the same data and had to learn a new
user interface.

Many of the problems were solved by
two standardization steps: everyone
agreed to use the IBM PC and everyone
used DOS and then Windows. A degree
of simplicity came back. As time went
on, though, it became clear that there
was still plenty of scope for complexity
to creep in. In particular, agreeing on the
platform didn’t break the platform
dependency of the software – it just
meant it was all codependent. And
when an update came along, everything
broke! In addition, there was no stan-
dardization beyond the power of
monopoly in the world of the data. Just
as the software depended on a particu-
lar level of the platform, so the data
related to a particular level of a particu-
lar brand of software. A complex web of
dependency was woven, in which a
change at any point led to instability
and perhaps failure in the whole web.

Race Point

Number of Nodes

Cost

E
n

tr
o

p
y
 D

e
a

th

E
n

tr
o

p
y
 D

e
a

th

FIGURE 1 Heading toward entropy death

65JANUARY 2000

Java COM

Codependency
The greatest enemy of computing is the cre-

ation of unintentional codependencies. As
computer solutions are built, they involve rela-
tionships among software, hardware, plat-
forms, development tools, and so on. Each is
connected to every other by unseen connect-
ing threads of codependency. Over time, the
cost of owning any solution is proportional to
the number of dependencies among the parts.
But by the unintentional creation of many
codependencies, the cost rises in an exponen-
tial rather than a linear way. The result is that
the addition of further codependent elements
increases the lifetime cost disproportionately.
The point at which this begins to apply is the
race point, and the condition beyond the race
point is termed entropy death (see Figure 1).
The inevitability of entropy death is set well
before the race point by the act of choosing a
system philosophy prone to codependency, the
unwitting reliance of one part of a system on
another, possibly mediated by some other ele-
ment. The most common unwitting codepen-
dency is between software and the operating
system it predicates.

This isn’t to say that all codependencies can
or should be avoided; some are inevitable. But
in modern system specification and design they
should be identified and justified in the same
way as any other cost driver, taking into account
not only the direct cost but also the lifetime cost
inherited by connection to the dependency net-
work. In general, software needs to be insulated
from the environment in which it is used. In
some situations use of native interfaces and
binaries is unavoidable, but in these cases a
platform-neutral “wrapper” around the native
code is almost always valuable.

For example, consider the apocryphal case
of a company that’s used the macro language of
an office suite as the basis for an office automa-
tion system. One day, installation of another
piece of software (unknowingly) updates one of
the DLL files used by the suite. Result? One of
the macros no longer works. They finally man-
age to get it working again, but the new version
needs an updated version of the spreadsheet

program. To get that they have to install a
whole new level of the office suite. Now none of
the macros work! They crawl through them,
updating and fixing, but among the other
things the fixes mandate is a new version of the
database driver. Sadly, that needs the latest ver-
sion of the database to work. So they upgrade
the database and…well, you can guess the rest.

The New Foundation
The problem is caused by the transmission

of the impact of change from subsystem to
subsystem. The integrated computing founda-
tion currently in use in most systems acts as a
transmission medium, allowing change in one
place to have an impact elsewhere.

How can we escape this trap? The key is to
disconnect data from software from platforms,
to use standards-based choices so that version-
version variations of the implementation have
the smallest effect possible. By doing this we
isolate changes from the transmission medium
(the underlying platform) and prevent the
impact of change from causing shockwaves of
cost – we add the insulating layer mentioned
earlier. What would be an optimal base of stan-
dards? The technology domains (see Figure 2)
such a foundation (see Figure 3) would have to
cover are:
• Network protocols holding systems together

and providing access
• Delivery model that brings the solution to

the audience that needs it
• Programming model by which the solutions

are created
• Data structuring model for the information

the solutions consume
• Security model that allows the right audi-

ence access to the right data and solution

Much of the change in the computer indus-
try over the last decade has involved the redis-
covery of technology ideas and their establish-
ment as standards within that model. The map-
pings are:
• Network: TCP/IP, which has now become so

widespread that it’s no longer a topic of con-
versation.

Embar
cadero

www.

embarcadero.

com

SECURITY

Program

Data

Network

Delivery

FIGURE 2 Technology domains

PUBLIC KEY

Java
Components

XML &
Vocabularies

Network

Web Model

FIGURE 3 The new foundation

J A V A & X M L

Java COM

66 JANUARY 2000

• Delivery: Web model stateless client/
server computing is the chosen deliv-
ery mechanism of a growing majority
of business computer users. Rather
than creating stateful clients that need
costly maintenance and support, state
is maintained instead at the server
and “loaned” to the client.

• Program: Only four years from release,
Java technology has established itself
as the standard for new software in a
vast number of enterprises, not least
because its JavaBeans architecture
allows component-based develop-
ment to be used in earnest. This isn’t to
say that all code needs to be written in
the Java language; it’s platform-neutral
Java bytecode binary programs that
win. Where these aren’t feasible, at the
very least a wrapper of Java technology
to insulate the rest of the solution from
native code is essential.

• Data: Apparently new to the scene,
XML is actually simplified SGML –
80% of the function for 20% of the
complexity. Uptake throughout the
computer industry has been huge,
and it shows every sign of dominating
data formatting in the future.

• Security: By removing the need to
send full key information “in the
clear,” public key-based security sys-
tems are already dominant, especially
on the Web.

From Technologies to Audiences
Alongside the agreement of the stan-

dards for the new world of computing
has been a shift in the requirements for
business solutions. In the past each solu-
tion would be built with only the
requesting customer in mind. The focus
was on who was using the solution and
where they were; hence terms like
intranet, extranet and Internet. But
progress has meant that the focus now is
much more on modeling the data and
defining the relationship of the user to
the data. There has been an inversion in
the approach to computing solutions,
and the focus has switched from tech-
nologies and systems to information and
audiences. Today, defining a new solu-
tion involves defining the relationship
that an audience has with a body of
information. In most cases a given body
of information will have multiple audi-
ences. Thus, for an online shop, when
customers view information, only their
particular data is accessible to them, and
it’s presented in a way to suit them; when
customer service staff from the vendor
view the same information, both the
scope and the presentation differ. It’s the
transition to a solutions-and-audiences
view that presents the greatest challenge
in IT today. But users can proceed with
confidence since all of the technologies

in the “new” tradition are in fact mature
and proven, so the transition is one of
emphasis and strategy rather than a leap
into unknown technology.

Parallel Worlds
The fact that all five of the foundation

technologies are well understood also
offers another benefit. For many users
migration to the new world of e-business is
something evolutionary rather than revo-
lutionary. They can take the first steps
without scrapping the investment they’ve
already made. This new world is thus a par-
allel world rather than an alternate one.

So why, after all that, will Java tech-
nology and XML succeed? There are sev-
eral reasons:
• Proven technology: All five segments

of the “new” foundation are based on
the oldest, best established ideas in
the industry: TCP/IP, “dumb” termi-
nals, virtual machines, markup lan-
guages, public key systems – all
proved by the experience of decades.

• User driven: In the final analysis, the
move to the new foundation is driven
by the needs and desires of the mar-
ketplace rather than by the fiat of any
one vendor or even of a consortium.
As the costs of computer technology
become more of a focus item, and
those driven by the upgrade arms race

You might have expected this whole
article to be about XML, but it’s so simple
that would have been impossible. Having
its roots in SGML (itself the development
of work carried out in IBM in the late
’60s), XML is very simply the idea of
using tags for formatting all data, not just
text intended for display in a Web brows-
er. Already you may insert pseudo-HTML
in your e-mail, like this:

<joke> Why did the chicken

cross the road ?</joke>

<punchline> To get to the other

side </punchline>

When you do this, you’re actually cre-
ating a fragment of XML. You’ve defined a
small vocabulary from which the tags
you’ve chosen are drawn (let’s call it
JokeML), you’ve made sure it’s well
formed (has closing tags to match all the
opening tags) and, apart from a line to say
where the definitions of the tags can be
found (a Document Type Definition or
DTD) and a line to say it’s XML, you’re
already an expert! Anyone who under-
stands what a joke is will understand this
data (although there’s no guarantee they’ll
find it funny), so instead of just being data,
it’s turned back into information.

As more and more vocabularies are
defined, XML is being used for tagging
data in all sorts of applications. It has the
great benefit of being digestible by com-
puters as well as humans – after all,
something like

<dl>

<dt> Why did the chicken cross

the road?

<dd> To get to the other side

</dl>

might clearly be a joke to human eyes,
but a computer would never guess,
whereas the XML fragment would be
accessible to any program that under-
stood JokeML.

XML will be used in the future wher-
ever there’s data – not just on the Web,
and certainly not just in Web browsers.
By putting the framework of meaning
back into the data, XML brings life to the
data, and turning the World Wide Web
into a worldwide database makes com-
munication between businesses possible
without all the pain of the EDI process.

To learn more about XML and related
standards, technologies and techniques,
start at the XML zone on IBM’s developer-
Works: www.ibm.com/xml/.

AUTHOR BIO
Simon Phipps, IBM’s chief
Java and XML evangelist,

was part of the team
that recommended Java

techology to IBM in 1995.
Since then he has spoken

internationally on
e-business foundation

technologies and now has
oversight of XML
marketing in IBM

worldwide.With over 20
years’ experience in the

industry, Simon has
worked on networking,

data communications and
operating systems for
various companies in

many contexts, including
development of the
earliest commercial

collaborative conferencing
software.

Certify
Online

www.certifyonline.com

XML: KEEPING THE INFORMATION IN THE DATA

67JANUARY 2000

Java COM

Embar
cadero

www.

embarcadero.

com

toward entropy death become more and
more obvious, the demand for the new foun-
dation becomes greater and greater.

• Vendor supported: All five technologies form
the basis of almost all vendors’ new solu-
tions. Vendors choosing an alternate at any
point increasingly discover the market ques-
tioning their choice and suspecting an
attempt at proprietary lock-in.

• Vendor neutral: All five technologies are
beyond the control of any one vendor, so
investments are protected from the risks of
vendor lock-in as well as the design choices
of any one vendor starting an upgrade race.
The only possible exception to this are Java
technology and public key, and it’s worth
taking time to consider why neither is a
problem in this context.

• Platform neutral: All five technologies are
independent of each other and of the plat-
forms on which they’re used. Thus they can
all be implemented anywhere, insulating the
systems that depend on them from code-
pendency.

Java Technology: Public Property?
Can a technology apparently developed and

controlled by a single vendor be considered
open? It all depends on the attitudes and
actions of the vendor and the time scales
involved. In the case of the five domains in the
new computing foundation, control has passed
from the originator to “the mind of the mar-
ket.” For example, although the core ideas of
public key systems are owned by one company,
the industry has been willing to base almost all
encryption and digital signatures on that tech-
nology because of a combination of the power
of the technology and the attitude of the own-
ers of the core patents.

In the same way, Java technology has
become public property that is currently pro-
tected by the owner of the core technology. A
move to standards body control would, howev-
er, be very positive. Standards bodies work bet-
ter as museums rather than as factories; the
parts of Java technology that are clearly estab-
lished, such as the bytecode specification and
the language, should be moved to the control
of a suitable standards body as soon as practi-
cal – the third quarter of 2000, when the core
patents of public key technology pass into the
open, would be a good target. As long as the
move toward full, externally controlled stan-
dardization continues apace, there probably
won’t be a problem. What’s more, that owner-
ship is nowhere as firm as in the case of public
key systems. If the whole industry chose to
implement Java technology differently, there
would be almost no recourse. But that doesn’t
happen, because any company seen to violate
the value of Java technology is shunned by the
market. The fact that the base of standardiza-
tion in Java technology is actually the binary
format of bytecodes rather than the language is
of course a big help. Thus, if we feel safe basing
key parts of the computing infrastructure on
public key systems, there’s all the more reason
to feel safe using Java technology. However, we
should feel concerned if ever the technology
owner puts brand equity before technology.
Asserting, for example, that Java will never be
made an independently managed standard
would be a gross betrayal of trust.

Conclusion
The key issue that should occupy us is not

how I can cut the cost of administration and
support, but how I can reduce toward elimina-
tion the amount of admin support that’s need-
ed. To reflect on this changed concept, and to
progress from the notions that sometimes turn
consideration of tco into tcp (total cost of pur-
chase), we should perhaps use a modified term
to express the issue at hand: lifetime cost of
ownership. The core assertion of this article is
that the primary decision factor for new com-
puter systems should be the cost of owning the
system over its entire life, lco – software, net-
work, and client and server hardware, com-
plete with development, deployment, adminis-
tration, management of impact during life-
cycle and migration to replacement systems at
sundown. The core proposal of this article is
that this factor be controlled by minimizing the
network of the codependent complexity that
these various elements create. To achieve this a
change of system philosophy rather than an
instant change of technology is proposed. By
basing future developments on a firm founda-
tion of standards, entropy death can be avoid-
ed. And this is the reason Java and XML tech-
nologies will succeed, cool though the tech-
nologies themselves may be!

sphipps@uk.ibm.com

The key issue that
should occupy us is

not how I can cut the
cost of administration
and support, but how
I can reduce toward

elimination the
amount of admin

support that’s needed?

‘‘

’’

WRITTEN BY
GENE CALLAHAN

AND ROB DODSON

A Generic Client/Server Architecture for Java
J A V A & C L I E N T / S E R V E R

W
e set out to build a generic framework for creating Java client/server rela-
tionships. Our hope was to encapsulate all of the messy details of the rela-
tionship, allowing developers writing a client or a server to focus just on
their particular application. This would allow our team to swiftly create
client/server relationships relying on robust, fully debugged classes to han-
dle communications.We wanted a framework that was simple and easy to
use, but flexible enough to handle multiple communications methods.

Motivation
It has generally been difficult to set up

the communications for a new client/
server architecture. The first hurdle is to
decide which of various methods to use:
custom-parsed data on a socket, serial-
ization, Remote Method Invocation
(RMI), JavaSpaces, a proprietary mid-
dleware package, and so forth.

The next issue to be tackled is connec-
tion management. This involves specify-
ing connection details such as host
names and port numbers, restarting the
server and reconnecting clients, graceful
disconnection, reporting errors, logging
and more. Much of the time these com-
plex problems are solved in a way that’s
tailored to the specific client/server pair
under consideration.

We had several criteria for an ideal
solution to our situation. First of all, we
wanted to pass serialized objects rather
than some format we had to parse our-
selves. This would allow us to rely on
Sun’s developing and maintaining our
parsing code. We would also have access
to books, online documentation, news-
group help and outside experts whenev-
er we needed assistance.

We wanted to use Java’s listener event
model, as it would allow for a consistent
event and communications model for a
program. Using this familiar model
would significantly decrease the time it
took a user of our framework to become
familiar with it.

Support for multiple lower-level com-
munication mechanisms was also a
requirement. We already knew that our first
server had to connect to Oracle, to an exist-
ing socket-based price server and to RMI-
based calculation servers. We could envi-
sion other connection types – such as telnet,
HTTP or SMTP – coming down the pike.

We needed our architecture to be
simple and robust. We wanted a narrow
API that would be easy to understand

and maintain. As much as possible of
the connection and event dispatching
code should be in library classes so it
could be coded and debugged once,
then reused many times.

We also want the application itself to
have enough control so it could handle
errors, logging and connection opera-
tions when it needed to. At other times it
could ignore these issues and let the
lower-level classes handle them. This
would allow our architecture to flexibly
extend to future projects.

Applicability
The architecture we came up with

suits our purposes quite nicely. We’re
developing for an equity-trading firm,
and frequently create new clients for use
by our traders and new servers to supply
the client programs with calculation
engines, data caches, trading models
and so on. Subsecond response to
queries is a requirement in many of our
applications, since trading opportunities
can appear and disappear very quickly.
Servers with extensive data caching and
high-performance calculation servers
are also a must in our environment.
Communication between these servers
and our clients must be speedy as well.
And we need to develop new client/serv-
er applications in a hurry to take advan-
tage of new market conditions.

Our design is not suitable for our
highest throughput jobs. For instance,
we wouldn’t contemplate rewriting our
master price server, which handles hun-
dreds of price updates per second, using
this architecture. The overhead of serial-
izing and deserializing objects would be
too high to meet these requirements.

It’s also not appropriate for multilin-
gual situations. By this we don’t mean
that the United Nations couldn’t use it –
only that it doesn’t talk anything but Java.
It’s possible, of course, to write code in

another language that serializes or dese-
rializes a Java object. But the large invest-
ment necessary to do so would negate
the advantages of this architecture.

We decided that the initial trial of our
architecture would be to use it to create
a client/server pair, which would give
our traders up-to-the-second informa-
tion on stock options. We’ll refer to this
project several times below.

Design
Bruce Eckel convinced us of the supe-

riority of the Java 1.1 event model in his
excellent book Thinking in Java. In the
paradigmatic use of the model, event
handlers don’t need conditional branch-
ing to determine what to do with a par-
ticular event because they rely on the
Java-type system to do so.

Because we weren’t handling a GUI,
however, our model primary dispatch
isn’t on the recipient of an event. In a
GUI, dispatching on the recipient makes
sense – creating a listener to get mouse
events over a button, for instance. But in
our situation the source for events at the
client is always the server, and on the
server it’s one of the clients. A “switch” on
this source would make little sense.
Instead, we register listeners for particu-
lar types of incoming objects. The classes
that flow between the client and server
become message types as well as possibly
being significant application elements in
their own right. To express interest in a
particular class of object, the server and
the clients create listener classes and call
a registration method in the library.

Error messages and protocol-level
events (e.g., a new client has connected,
or the server has gone down) are also
represented as classes, and are received
and handled in the same way as applica-
tion-level objects.

Because of our use of the listener pat-
tern, neither our library nor its users

Java COM

68 JANUARY 2000

Simplifying inter-app communications

need conditional code or large switch state-
ments to process communications. Listeners
are registered with the library and placed as a
value in a hashtable, a value for which the class
they receive is the key.

Our architecture permits asynchronous call-
ing of the listeners. The server can send out
objects the client hasn’t requested, such as
updates to an object the client is viewing, in the
same manner in which it sends out requested
objects.

Our architecture also supports a generic
monitoring program that the server can tailor
to its own needs. It’s easy to create both GUI
and command-line monitors. They include
built-in statistics gathering on the number of
each class sent and received, as well as connec-
tion information such as application name,
hostname and so on. To allow any particular
server to tailor the monitor to its needs, the
server can pass a list of monitoring commands
to the monitor (see CommandList below). The
monitor then puts them in a menu for easy
access. Examples of commands we’ve imple-
mented include shutdown, kill clients, turn
server statistics on and turn them off. The
monitor then periodically sends out a request
for status object and receives back information
on server performance and statistics. Because
these monitoring facilities are built into the
Channel class, you can worry about applica-
tion design and not about building monitoring
protocols. You can monitor your application in
its early stages and not have to hack in moni-
toring later, as too often occurs.

Implementation
The classes we created to implement this

architecture are as follows.
• Channel: There’s one Channel object per

logical service provided by a server. For
example, all clients of our option server
clients connect to it on the same channel.
The Channel is the main class through which
applications connect, read and write objects,
handle errors and disconnect. The Channel

therefore provides methods such as con-
nect(), send() and goodbye(). There’s no
read() method because all objects are
received through the ReceiveListener inter-
face. This interface has a single method
called recv(ChannelMsg). For an application
to receive objects it simply implements a
ReceiveListener and then calls Channel.reg-
isterListener(Class,ReceiveListener). The
first argument is the class type of the objects
that will be passed to the listener. Example:

public class FooListener implements

ReceiveListener

{

public void recv(ChannelMsg msg)

{

Foo f = (Foo)msg.getData();

System.out.println("Got a Foo: " + f.toString());

}

}

channel.registerListener(Foo.class,

new FooListener());

• Device: Device is an abstract class. There’s one
Device per connected client, and therefore
many per Channel. For example, the Channel
in the option server has multiple Devices,
each of which represents a connection to a dif-
ferent client. Creating new lower-level mecha-
nisms is simply a matter of implementing new
Device classes. Specific applications don’t care
about how the communications are carried
out – they just send and receive objects. A
descendant of the Device class could even
implement a disk-file–based communication
mechanism. The Channel calls device meth-
ods to do the actual sending and receiving of
objects, as well as the connection/disconnec-
tion tasks. The Device class uses the common
open/close/read/write model. Therefore, the
most important Device methods are:

public abstract void open() throws IOExcep-

tion;

public abstract void close();

public abstract void write(Object o) throws

IOException;

public abstract Object read() throws IOEx-

ception, ClassNotFoundException;

The Device abstract class doesn’t define a
constructor – the constructor will probably
be different for each concrete Device, allow-
ing parameters for that particular transport
method. For example, the SockDevice uses
sockets as its mechanism. Therefore the con-
structor takes hostname and port number
parameters. (Figure 1 shows the relationship
of Channel and Device objects.)

• SockDevice: This is the first concrete imple-
mentation of Device we created. It handles
TCP/IP sockets as a transport mechanism. It
uses the Java Socket classes and simply reads
and writes serialized objects to and from the
stream associated with the socket:

69JANUARY 2000

Java COM

noitacilppArevreS

lennahC Device

Server Application

lennahC

noitacilppArevreS

Client Application

lennahC

Channel

DeviceDevice

noitacilppArevreS

Client Application

lennahC

Channel

DeviceDevice

DeviceDevice

DeviceDevice

DeviceDevice

FIGURE 1 Application diagram

Embar
cadero

www.

embarcadero.

com

Java COM

70 JANUARY 2000

out = getWriter(sock.getOutput-

Stream());

out.writeObject(o);

out.flush();

out.reset();

The reset() call is included because
serialized objects are cached by Java.
If you send the same object twice, Java
won’t serialize it a second time. This is
problematic if you change some fields
in the class between the first and sec-
ond call. The second call will use the
cached class and your changes won’t
be sent. In our Device class the call to
the reset() method can be toggled off
or on. If you’re sending the same class
and aren’t changing it, it will be more
efficient not to call reset().

If some parts of an object intended
for serialization are useful only to the
server or client, they can be declared
transient and never instantiated on
the side that isn’t interested in them.
For example, the server may have a
database connection for some objects,
allowing it to fill in their fields. Since
they’re filled in before moving to the
client, the client doesn’t need the con-
nection. Declare it transient, and you
get the behavior you want.

EVENT CLASSES
A small number of simple event class-

es for managing and monitoring con-
nections are built into our library. When
certain events occur (e.g., a new client
connects to a server), and if the applica-

tion has supplied a listener, the applica-
tion’s listener will be called when the
event occurs. Some of those classes are:
• ClientConnect: This is sent to a server

application whenever a new client
connects to it. The class contains an
AppInfo object that lists information
about the connecting client.

• RemoteGone: This is sent to the appli-
cation (client or server) whenever a
remote connection disappears.

• ServerConnected: Received by Chan-
nel clients when they have successful-
ly connected to a server.

• Error: Sent into the application on any
kind of general error. Contains error
message and exception information.

• Goodbye: This is sent by a client to a
server in an attempt to disconnect
gracefully. If a client disconnects and
the server doesn’t receive a Goodbye
object, it assumes the client has
crashed and emits an Error object.

• AppInfo: Objects of this class are
exchanged when a client and server
first connect. It contains information
about the sender such as hostname
and user name. It may also contain
device-specific info in a general info
field. For instance, the SockDevice
stores the port number there.

• CommandList: A server may send a
CommandList to a monitoring client.
This allows the monitor the ability to
control the server.

• ChannelMsg: A ChannelMsg is passed
to the recv() method of all ReceiveLis-
teners. It provides access to the object
that was sent. It also has handles to
the Channel in use and the current
Device over which the object arrived.
These are most often used to reply to
the sender of the object. For example:

recv(ChannelMsg msg)

{

msg.getChannel().send(msg.getDe-

vice(), "Hi");

}

See Figure 2 for a diagram of the fore-
going classes.

A SMALL APPLICATION
The ease of setting up connections is

shown in the small code sample in Listing 1.

A NOTE ON THREADING
The waitForClients() call in the exam-

ple server code above spawns off a
thread to listen for new clients. Normal-
ly the application shouldn’t return from
this call. When a new client connects, a
thread for the new client is created. This
new-client thread will be the one that
calls the ReceiveListeners. Applications
are responsible for synchronizing their
domain-specific data where needed.

The client side of the Channel also
uses a separate thread to listen for
objects returned from the server. Listing
2 is an example client application that
first waits for a server, then calls Chan-
nel.waitForMsgs(), which launches the
receive object thread. The listing pro-
vides the code to send a message to the
server as well as some code to reconnect
if there are any errors.

Consequences
The result of our efforts has been an

extremely simple, flexible architecture
for Java client/server relationships. A
simple client/server pair can be created
in a matter of minutes. In the specific
application for our trading floor we were
able to create a sophisticated and useful
new client/server pair, working from an
existing stand-alone client, in a couple
of weeks. Our architecture can handle
hundreds of thousands of price updates
in a day. Our server caches stock and
option information for several hundred
securities and relays them to multiple
clients in close to real time. A sign of the
success of our design is that we’ve had to
spend very little time on the classes
described above once they were com-
pleted and debugged. This simple set of
methods has provided the ability to cre-
ate major applications with little atten-
tion to communications issues.

gcallah@erols.com robdodson@erols.com

AUTHOR BIOS
Gene Callahan, president

of St. George Technologies,
designs and implements
Internet projects. He has

written articles for several
national and international

industry publications.

Rob Dodson is a
software developer who

writes options-trading
software in Java and C++

for OTA Limited
Partnership. Previous

projects include weather
analysis software, tactical

programs for Navy
submarines and code for

electronic shelf labels.

Channel channel = new Channel(new Sock-
Device(hostname, port));
public class MyErrorListener
{
public void recv(ChannelMsg msg)
{
Error e = (Error)msg.getData();
System.err.println(e.getErrorString());
// do something with the error!

}
}
Channel.registerListener(Error.class,
new MyErrorListener());
channel.waitForClients(true);

while (true)
{
// Wait for a server
while (channel.getCurrentDevice().isDe-
viceOk() == false)
{
try
{
channel.waitForMsgs(false);

}
catch (Exception e)
{
Log.println("server not there");
try { Thread.sleep(2000); } catch

(Exception ee) {}
}

}
try
{
channel.send(new Command("status"));

}
catch (Exception e)
{
// Problems? Go back and wait for server

break;
}
if (channel.getCurrentDevice().isDe
viceOk() == false) break;

}

Listing 2Listing 1

J A V A & C L I E N T / S E R V E R

UserClasses

RemoteGone

ClientConnect

ChannelError

Hashtable
of

Listeners

Channel

Device

RMI
Device

Java
Space
Device

Sock
Device

AppInfo

hasa

isa
isa

is
a

ha
sa

l

m

FIGURE 2 Channel class diagram

71JANUARY 2000

Java COM

KL Group
klgroup.com/interface

There are several books and articles out there on dynamic-content

generation technologies such as CGI, NSAPI, server-parsed HTML,

server-side JavaScript, Active Server Pages and ColdFusion. Recently,

Java Servlets and JavaServer Pages (JSPs) have emerged as a very

popular technology and a lot of material has been written about

them. Most of the articles focus on programming model features,

ease-of-development issues and integration with tools. However, an

increasing concern of Web site developers is to develop sites that can

scale to a large number of hits. This is especially true of corporate

software developers and those building the brand-name dot.com

sites of tomorrow. This article focuses on how Web developers can

design their server-side applications for scalability and performance

using Java Servlets and JSPs.

Java COM

72 JANUARY 2000

J D J F E A T U R E

WRITTEN BY RUSLAN BELKIN & VISWANATH RAMACHANDRAN How to develop
Web sites that
can scale to a

large number of
hits

73JANUARY 2000

Java COM

Visicomp
www.visicomp.com

Java COM

74 JANUARY 2000

Java Servlets and JSPs
The Java Servlet API was designed to be a basic Web server extension

mechanism in Java. It was modeled after NSAPI and ISAPI (which are the
C/C++ extension mechanisms for the Netscape and Microsoft Web
servers) and originally it was just the native plug-in API of the Java Web
Server. It’s a simple API that supports a request-response model, thus
mirroring the nature of HTTP protocol. The simplest servlet is one that
just returns a page saying “Hello world” to the client (see Listing 1). In the
listing the servlet also checks for a form parameter called “name.” If the
name is supplied by the client, “Hello name” is printed instead. The
functionality of the servlet is implemented by simply overriding the
doGet method of HttpServlet.

In addition to request parameters, the servlet API can give the server
plug-in developer the ability to manipulate
most of the HTTP protocol-specific informa-
tion in the server. This functionality is exposed
through request and response objects (for
HTTP request and response processing), and
session objects (for handling HTTP sessions).

JSP technology was created to further sim-
plify Web application development by separat-
ing the logic of the application from its con-
tent. This allows less sophisticated Web devel-
opers to take advantage of the latest Java tech-
nologies. JSPs provide developers with capabil-
ities to embed the code logic directly into
HTML pages. Another important feature is the
ability to instantiate and use JavaBeans in a
natural manner. This feature allows task parti-
tioning between content developers and appli-
cation logic developers. Listing 2 contains the
same program written as a JSP.

A JSP is a document in a specialized markup
language (with fragments of Java code); a
servlet is a Java program. While there’s overlap
between the functionality of servlets and JSPs,
typically the content and presentation logic
belong in a JSP and the back-end code and
programming logic belong in servlets.

How to Measure Performance
In order to design high-performance, scalable Web sites, it’s essential

to first understand the metrics by which they’re measured. This section
focuses on various metrics used to measure the performance of server
software or a Web site. Since we’re focusing on Web servers, the discus-
sion is specific to the HTTP protocol.
• Latency: The amount of time the Web server takes to process a request.

This is an important metric, as you don’t want customers of your Web
site to wait too long for a request to be processed, especially when
they’re likely to hit the “Reload” button to further increase the load on
the site. It’s important to keep both the average and the maximum
latencies as low as possible. If you see high latencies with low CPU uti-
lization, you may want to investigate if there’s a lock contention some-
where in your Web applications. Typically measured in milliseconds.

• Throughput: The quantity of data the Web server running a particular
application is able to push through per unit of time. This is important,
especially for dynamic content applications that are generating rich
content (including multimedia content). Typically measured in kilo-
bytes per second.

• Connection rate: The number of new connections the Web server is
capable of accepting per unit of time. This metric gives an idea about
how well your Web site will scale to large numbers of client accesses.
The maximum feasible connection rate is usually measured by increas-
ing the load until average latencies rise considerably and/or CPU uti-
lization reaches 100%. Typically measured in connections per second.

• Request rate: Number of HTTP requests the Web server is capable of
processing per unit of time, given any reasonable mix of client behav-
ior (HTTP 1.0, HTTP 1.1, pipelined requests, keep-alive requests). Note
that this is different from the connection rate because multiple HTTP
requests may be served on the same connection. However, the mea-
surement technique is similar to the connection rate.

While latency and throughput are performance metrics, connection
rate and request rate are metrics of scalability. To judge your Web site’s
performance and scalability, it’s important to use anecdotal evidence of
speed, but it’s also important to measure scientifically, based on typical
client accesses.

Session Management
HTTP protocol, as a model of communication

between the client (a Web browser) and the serv-
er, is stateless in principle. While this makes it
easy to implement, it certainly makes it harder
for a meaningful Web application that preserves
state or session information to be developed. A
typical example of a session-aware Web applica-
tion is a shopping cart in which to store selected
items for checkout at some point in the future.

The need to maintain reliable session informa-
tion for Web applications actually sparked a whole
new class of software called Web application
servers (e.g., Netscape Application Server, NetDy-
namics, WebLogic). These products, in addition to
their legacy-integration capabilities, introduced a
whole host of features that reliably enabled main-
tenance of state on the server side. However, the
use of server-side session management facilities
may cause degradation in scalability because:
• There may be lock contention while synchro-

nizing on session objects.
• Maintaining the remote state across multiple

server processes may introduce further over-
head due to interprocess communication.

Don’t use server-side state or session objects unless you absolutely
have to. In many cases all the information can be transmitted between
the client and the server via cookies or URL rewriting. This is especially
true of nontransactional applications in which the reliability and integri-
ty of the session is not as critical. Listing 3 gives code fragments where
request parameters may be used instead of server-side state manage-
ment to maintain the client’s session.

Application Partitioning
With the advent of multitier programming models on the server, it’s

typical for Web sites to be architected with most of the programming
logic residing in Web and application servers while the data resides in
databases. A typical architecture is for Web servers to talk HTTP with
clients, with an application server being the middle tier that talks to the
database. The Web and application server usually run in different
process spaces, and communicate using a proprietary or standard pro-
tocol. The Web and application servers are often distributed across mul-
tiple boxes.

In light of this, it’s critical to partition your Web application in an
appropriate manner. An ideal practice is to place stateless or light-state
objects (which don’t need to carry a reliable state) onto the front-end
Web server, while keeping more complex objects on the application
server of your choice. This often translates into keeping static HTML,
content files and JSPs on the Web server, and transactional applications
on the application server. For intermediate-sized applications there are
trade-offs to keeping them on either the Web or application server. By

Typically the
content and

presentation logic
belong in JSPs,

while the back-end
code and program-
ming logic belong

in servlets

‘‘

’’

75JANUARY 2000

Java COM

VSI
www.vsi.com/breeze

implementing such a partitioning, the content, presentation and simple
applications of your Web site enjoy low latency and high request rates
(by virtue of running on the Web server), while the more critical applica-
tions enjoy reliable state maintenance and transactional semantics (by
virtue of running on the application server).

Custom Session Management
Since most nontrivial Web applications implemented using servlets

and JSP will make heavy use of HTTP sessions,
it’s critical to select a platform that imple-
ments them efficiently. The most common
implementation provided by Web servers
today is in-memory session managers, which
are very fast but may not provide the reliabili-
ty or scalability desired for a high-end Web
site. Other implementation strategies such as
database-resident or shared-memory session
managers may be considered. Often the best
session manager will depend on the charac-
teristics of the Web application being devel-
oped.

It’s important therefore to choose an appli-
cation deployment platform that enables the
use of custom session managers through a
plug-in API. When we were designing iPlanet
Web Server 4.0 (formerly Netscape Enterprise
Server), we decided to provide and support a
session manager API within the servlet engine.
We believe this will provide advanced users
and third-party vendors with the capability to
create their own custom session management
solutions.

When to use custom session management?
Consider, for example, when you already have
a very efficient and proven architecture deployed to store and retrieve
data efficiently across the network: the plug-in API for session manager
will enable you to use this existing back-end solution to effectively store
and retrieve session information just by implementing a few helper
classes.

HTTP Protocol and JVM Issues
When choosing the appropriate platform for Web applications, one

should always keep in mind how well HTTP protocol itself is imple-
mented and integrated with the rest of the system. Since HTTP protocol
is the way browsers speak to Web servers, the choice of the Web server
platform is very important. The following features of HTTP 1.1 increase
the overall performance of the system tremendously, and it’s critical to
select a Web server that implements them well.
• Pipelining: Modern browsers are capable of sending requests without

waiting for the response from the server for each one of them. As you
can see from Table 1, HelloWorldServlet has almost double the request
rate when both the client and server support HTTP pipelining. The

latency also decreases about 40%. The performance difference with a
complex example, WASPServlet, that exercises most of the Servlet API
isn’t as drastic but is still noticeable.

• Chunked encoding: This is the HTTP 1.1 protocol feature that
enables Web servers to send responses to the clients in chunks while
keeping the connection alive. Consider, for example, a server-parsed
HTML file (SHTML), which calls a servlet and a CGI. We expect the
SHTML file to be preparsed by the Web server and cached. The
servlet and CGI will be executed for each request. Since the servlet

and CGI don’t know about each other, they
may both attempt to set the Content-Length
header. To maximize the performance, the
Web server could buffer the output and adjust
the Content-Length header appropriately, or
use chunked encoding so the connection
between the browser and the Web server
remains open.

One of the reasons we chose an in-process
architecture for the servlet engine in iPlanet
Web Server 4.0 was to be able to take advan-
tage of the advanced HTTP 1.1 features of the
Web server, such as pipelining and chunked
encoding.

It’s also important to select a JVM that has
optimal performance characteristics. Ideally,
your Web server allows you to plug in any JVM
of your choice, and its plug-in layer is designed
so as not to introduce additional overheads.
For example, iPlanet Web Server 4.0 allows any
JNI-compliant JVM/JDK/JRE to be plugged in
(JDK 1.1 or Java 2). It also employs a number of
advanced techniques to minimize the effect of
the JVM on the rest of the system. For example,
you can allocate a separate thread pool to run
Java applications. Request threads allocated

from that pool will be attached to the JVM only once, thereby decreasing
the overall overhead. On the other hand, when the garbage collector
decides to suspend these threads, it will have no effect on the rest of the
system.

Programming Practices
Perhaps the most overlooked aspect of developing high-performance

plug-ins is the need to write good Java code. Some suggestions:
• Try to scope all your references carefully so the garbage collector can

take care of them easily (i.e., don’t generate excessive garbage if you
don’t need to).

• Pool expensive resources (threads, database connections, etc.) instead
of trying to construct them on every request. Listing 4 shows a code
fragment in which an expensive object is managed by creating a pool
for it in the servlet init method rather than by creating a new one on
every request.

• Be extremely careful with synchronized methods as they may result
in a lock contention. Try to make critical sections as short as possible.

Java COM

76 JANUARY 2000

TABLE 1 Effect of HTTP Pipelining

Request Rate (per second) Average Latency (ms) Request Rate (per second) Average Latency (ms)

HelloWorldServlet 589 25.4 1048 15
WASPServlet 247 54.1 334 53

Note: These numbers don’t represent an offical benchmark or any other claim and may not be referenced in any way other than as an illustration in the context of this article.
Hardware and software setup: Sun SPARC Ultra II 296MHz dual-CPU, Solaris 2.6, Exact VM JDK 1.2.1_03, iPlanet Web Server 4.0, WebBench Windows NT clients were used to
drive the load.

HTTP 1.1 (WITH NO PIPELINING) HTTP/1.1 (UP TO 5 PIPELINED REQUESTS)

Perhaps the most
overlooked aspect

of developing
high-performance

plug-ins is
the need to write
good Java code

‘‘

’’

77JANUARY 2000

Java COM

Concentric Network
www.concentrichost.net

You may consider using third-party or your own locking mechanisms
to avoid inefficiencies of Java language (such as an absence of read-
er-writer locks) or Java libraries (for example, many Java collection
classes, such as java.util.Hashtable, are inefficient, even in modern
JVMs).

• Keep in mind that garbage collection can have an adverse effect on all
threads that the JVM knows about (they can be arbitrarily suspended
by the garbage collector). This can change the timing characteristics
of your application.

Conclusions
Web site developers today have a wide variety of programming lan-

guages, models and tools to select from. While designing their Web
applications for high performance and scalability, they need to keep in
mind the following points:
• Measure the performance using well-understood metrics such as

latency and request rate.
• Avoid server-based state management for nontransactional parts of

the application.

• Partition the application across the Web and application servers,
keeping the transactional components on the application server.

• Use a custom session manager if necessary.
• Deploy on a Web server that supports the HTTP 1.1 protocol correctly

as well as the use of modern JVMs.
• Write good Java code, use pooling of expensive resources and avoid

excessive synchronization and poor scoping practices.

AUTHOR BIO
Ruslan Belkin, lead engineer and architect of Java Servlet and JSP support in iPlanet Web Server 4.0
(formerly Netscape Enterprise Server), has over 10 years of experience in the industry and is a member of
the Servlet API expert group. Ruslan has worked on Java, CORBA, distributed objects, component models
and scripting languages, with. special focus on high-performance implementations of standards.

Viswanath Ramachandran is a researcher working on JSP and JavaScript support in the iPlanet Web server
group. A member of the JSP expert group, he holds a Ph.D. in computer science from Brown University in the
field of programming languages. Current research interests include JavaScript performance, compilers and
Web protocols.

Java COM

78 JANUARY 2000

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class HelloWorldServlet extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletRe-
sponse res)
throws ServletException, IOException

{
res.setContentType("text/html");
String name = req.getParameter ("name");
If (name == null)

name = "world";

PrintWriter out = res.getWriter();
out.print("<html>");
out.print("<head><title>Hello World</title></head>");
out.print("<body>");
out.print("<h1>Hello " + name + "</h1>");
out.print("</body></html>");

}
}

<html>
<head><title>Hello World</title></head>
<body>
<% String name = request.getParameter ("name");
if (name == null)

name = "world";
%>
<h1>Hello <%= name %> </h1>
</body>
<html>

public class ServerSessionServlet extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletRe-
sponse res)
throws ServletException, IOException

{
HttpSession session = req.getSession ();
……

UserInfo info = search4user (session.getValue
("username"));

}
}

public class ClientParametersServlet extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletRe-
sponse res)
throws ServletException, IOException

{
String username = req.getParameter ("username");

UserInfo info = search4user (username);
}

}

public class UnpooledServlet extends HttpServlet {

public void doGet (HttpServletRequest req, HttpServletRe-
sponse res)
throws ServletException, IOException

{
res.setContentType("text/html");
….
ExpensiveObject o = new ExpensiveObject (….);
….

}
}

public class PooledServlet extends HttpServlet {

public void init (ServletConfig config)
{

super.init (config);
expensiveObjectPool = new ExpensiveObjectPool();
for (int i = 0; i < 10; i++)
expensiveObjectPool.add (new ExpensiveObject (….));

}

public void doGet (HttpServletRequest req, HttpServletRe-
sponse res)
throws ServletException, IOException

{
res.setContentType("text/html");
….
ExpensiveObject o = expensiveObjectPool.get ();
...
expensiveObjectPool.recycle (o);

}
}

Listing 4: Pooling of resources (UnpooledServlet.java and PooledServlet.java)

Listing 3: ServerSessionServlet.java and ClientParametersServlet.java

Listing 2: HelloWorld.jsp

Listing 1: HelloWorldServlet.java

ruslan@netscape.com vishy@netscape.com

79JANUARY 2000

Java COM

JDJ Record
Circulation

www.sys-con.com

Java COM

80 JANUARY 2000

JDJ Record
Circulation

www.sys-con.com

81JANUARY 2000

Java COM

JDJ Record
Circulation

www.sys-con.com

Java COM

82 JANUARY 2000

JDJ Record
Circulation

www.sys-con.com

Java COM

Building the
NEW ENTERPRISE

SPONSORED BY: PRODUCED BY:

Java and Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. SYS-CON Publications Inc., Java Developer’s Journal and Camelot Communications are independent of Sun Microsystems.

Benefit by Attending
■ The tips and techniques you’ll

learn will help you do your job
better.

■ Discover new applications being
developed today that you will
need tomorrow.

■ Sessions are designed for the
users at all levels with special
sessions just for gurus.

■ Network with fellow software
developers as well as recog-
nized Java experts.

■ You’ll learn how Java is being
used for large-scale enterprise
applications.

Two-Day Exhibit
A full-scale exhibit hall packed with
leading vendors will be on hand to
demonstrate the latest products and
answer your questions. All are
welcome to fun-filled networking
opportunities.
Exhibit Hours:
Monday, September 25, 12:00 – 7:30
and Tuesday, September 26, 12:00 – 5:30

Take A Look at What You’ll Learn:
■ Building Mission Critical

Applications with Java
■ Advanced JFC/SWING

Component Integration
■ Real-Time Java
■ Designing High Performance

e-Commerce Systems with EJB
■ Combining XML and Java
■ Java 2 Enterprise Edition
■ Java Advanced Programming
■ Java Security
■ Java Runtime Internals
■ Building a Multithreaded Server

in Java
■ Methods for Effective Java Unit Testing
■ Developing COM and MTS

Components in Java
■ Developing Multi-tier Applications

Using the Servlet API
■ Object Oriented Analysis and

Design with Java
■ Dynamic Bytecode Generation

with Java
■ JDBC Technology

■ Developing Large Scale
Applications with Java and CORBA

■ 2D and 3D Graphics in Java
■ Designing Java Business

Applications
■ Java and Legacy Systems
■ Using the Java Naming and

Directory Interface API
■ Java Gaming
■ Programming for Devices (J2EE)
■ Programming for the Desktop

(J2SE)
■ Java Commerce
■ Using Java Agents
■ Jini and JavaSpaces
■ Java Testing and Debugging
■ Java Exception Handling
■ Garbage Collection Techniques
■ Using Java with UML
■ Writing Consumer Applications

Using Personal Java API
■ Smart Card Application

Development
■ Database Integration with Java

Are You a Java Guru?
Why Not Join Our Faculty?
If you’re anxious to share your unique
Java experience, please send an email to
stewart@camelot-com.com for details
on how you may join the faculty. Topics of
Interest Include but Are Not Restricted to:
■ Java in the Enterprise
■ Embedded Java
■ Java Success Stories/Real World Java
■ Advanced Java Application

Development
■ XML & Java
■ Java in the Industry/ Java

Business Applications
■ Server-Side Java
■ Java Testing and Debugging
■ Object Oriented Concepts and

Design with Java
■ Java and Open Source
■ Component Software and Frameworks
Call for papers
Deadline: April 17, 2000
Acceptance: May 15, 2000

Join 100% Java Developers
Over 2,500 of your peers will be at JavaCon 2000, along

with the industry’s most respected technical experts,

soughtafter gurus and advanced users who will show you

how to maximize Java for the enterprise. Make 2000 your

year! Dedicate yourself to 4 days of Java intellect and

master new skills from those who are defining Java’s future.

Java Developer’s Journal
Puts a Twist on Today’s Hottest Topics

JavaCon 2000 is
your only opportunity
to learn from the
experts at Java
Developer’s Journal
– who best combine
technical expertise
and practical vendor
know-how.

W W W . J A V A C O N 2 0 0 0 . C O M

CONFERENCE September 24-27, 2000

EXHIBITIONSeptember 25-26, 2000

SANTA CLARA
CONVENTION CENTERSanta Clara, California

Java Developer’s Journal Announces...

Java COM

84 JANUARY 2000

Sun Halts Java
Standards Efforts
(New York, NY) –
Sun Microsystems,
Inc., announced at
December’s Java Business
Conference in New York City
that it is halting its efforts to
make Java an industry standard.

Making the Java language an
industry standard would give
other companies, such as its
partner, International Business
Machines Corp., a stronger
position in defining the future
direction of the software.

This past spring Sun sub-
mitted Java to ECMA, a Euro-
pean standards body, after it
withdrew from the Interna-
tional Standards Organization,
another standards body. Sun
said it is withdrawing its pro-
posal to ECMA due to similar
issues. www.sun.com

Sun Offers J2SE for Free
(New York, NY) – At the Java
Business Conference Sun also
announced the avail-
ability of its core
Java technology,
the Java 2 Plat-
form, Standard
Edition, at no
charge. Since
the release of the first version
of the Java technology in Janu-
ary 1996, Sun has licensed the

Java platform source code,
including the Java program-

ming language, runtime
compiler and class

libraries, for various fees and
royalties.

Beginning January 31, the
source code for J2SE will be
offered without charge. The
binary runtime environment
will continue to be offered free
as well. www.sun.com

ComponentSource
Launches World’s First
EJB Software Compo-
nents onto the WWW
(Marietta, GA) – Compo-
nentSource, a leading Inter-
net-based distributor of soft-
ware components and related
services, announced an agree-
ment to supply the world’s
first-ever Enterprise JavaBeans
globally over the Net.

The components, devel-
oped by The Theory Center
(recently acquired by BEA
Systems Inc.), are based on
the EJB 1.1 standard and offer
core functionality to save cor-
porations from having to
understand the complexities
of building e-business solu-
tions from scratch. www.com-
ponentsource.com

Tower Technology Unveils
TowerJ 3.5
(Austin, TX) –
TowerJ 3.5,
which includes support for
the Java 2 specification, will
enter beta testing this month
and be generally available
during the first quarter.

Java developers will be able
to deploy dynamic server apps
based on the Java 2 spec while
significantly improving perfor-
mance. TowerJ 3.5 includes
enhanced support for servlets,
EJB and JavaServer Pages.
www.towerj.com

SourceGuard 4.0 Shipped
by 4thpass
(Seattle,WA) – 4thpass has
begun shipping the next ver-
sion of its deployment tool for
the Java platform. New fea-
tures include Code Pruning,
which allows developers to

trim applets
and cut their
download

time in half, and the addition
of custom packaging for
embedded applications, which
enables Java software vendors
to customize the deployment
of their embedded applica-
tions and reduce the overall
cost of memory-constrained
Internet-enabled appliances.
www.4thpass.com

Geek Cruises Departing November 2000
(Palo Alto, CA) – Geeks and other computer
professionals are invited to attend Java Jam,
a seven-day cruise through the western
Caribbean seas that combines the fun of a
luxury cruise with Java instruction.

Designed for intermediate and advanced
Java programmers, courses and seminars
such as “Tips for the Java Wizards,” “Devel-
oping Mission Critical Applications Using
JDBC” and “Jini Architecture Overview” will
be taught by expert instructors. They include
Jon Meyer (coauthor of the book Java Virtual
Machine and research scientist at NYU’s
Media Research Laboratory), Bill Day (con-
sumer devices software designer) and Ian
Darwin (UNIX and Java
developer as well as author
of three books and nearly
60 magazine articles).

Courses range in length
from two-day and one-day

to half-day formats, and are scheduled for
times when the ship is in transit.

Java Jam is a way for programmers to
learn new skills, and to network and relax.
Companies can use these cruises as bonuses
or incentives for outstanding employees.
“Employers can offer a great vacation to
employees, while ensuring that they will
learn new skills in the process. Everyone
benefits!” according to Neil Bauman, presi-
dent of Geek Cruises. There’s also plenty of
entertainment for non-geek companions.

Java Jam departs from Fort Lauderdale,
Florida, in November 2000. Port stops include
Half Moon Bay, Bahamas, Georgetown, Grand

Cayman and Cozumel, Mexico.
The $575 program fee includes
all seminars, materials and a bon
voyage cocktail party. Stateroom
prices start at $999 per person.
www.geekcruises.com

Sub-
scribe

www.sys-

con.com

85JANUARY 2000

Java COM

Riverton Software
www.riverton.com

Introducing TAME
Version 4.0
(Chicago, IL) – VirtualSellers.com
Inc. has released TAME version
4.0, which uses an interpretive
language that is UNIX and Win-
dows NT compatible. By reducing
bandwidth requirements, devel-
opers can
save up to
50% in
coding time compared to
Microsoft Active Server Pages. In
addition, XML is embedded in
the language, reducing the time
required to develop tags.

VirtualSellers.com’s new TAME
programming language, which
includes a dynamic Web page
engine, provides Web access to
databases, giving developers the
ability to create solutions that can
be deployed on all operating sys-
tems and server environments,
resolving the common problems
associated with many of today’s
non-XML browsers.
www.virtualsellers.com

Aether Systems Releases
AIM 2.0
(Owings Mills,
MD) – Aether
Systems, Inc.,
has released an
upgraded version of its wireless
data software, Aether Intelligent
Messaging, version 2.0. The newest

version of AIM includes applica-
tion programming interfaces for
Java and Microsoft COM environ-
ments, in addition to AIM’s C/C++
programming environment. AIM
also now supports Solaris and
Windows NT back-end servers.

During the first quarter a special
developer toolkit for AIM 2.0 will
be available for download from an
Aether “Developer Zone” on the
Aether Web site.
www.aethersystems.com

Gen-it for Java Code
Generator Now Shipping
(Montreal, Quebec) – Codagen
Technologies Corp. announces the
availability of
Gen-it for Java
code generator.
Codagen’s
patent-pending
technology
reduces the time associated with
the coding and maintenance of
software applications by enabling
developers to make changes with-
in the modeling tool or at the gen-
erator instructions level rather
than through tedious and error-
prone manual coding. Gen-it for
Java is architected to work with the
industry’s leading UML modeling
tools. It’s available for download
from the Codagen Web site at an
introductory price of $4,900US per
user. www.codagen.com

PointBase Introduces
Release 3
(Mountain View, CA) –
PointBase, Inc.,
announces new products and capa-
bilities for extending, managing and
integrating data across the Internet.
With Release 3 PointBase adds its
new UniSync option for synchro-
nizing data across multiple data-
base systems. The company has
also announced its Embedded Serv-
er database product for demanding
multiconnection embedded appli-
cations and its Device Edition for
managing SQL data on memory-
constrained devices such as PDAs
and Internet appliances.
www.pointbase.com

Pramati Launches Server
and Studio for J2EE
(Hyderabad, India) – Pramati
Technologies, Ltd., announces
the release of its Server and Stu-
dio based on the Java 2 Platform,
Enterprise Edition.

Apart from compliance with the
J2EE speci-
fication,
Pramati
intends to
differenti-
ate its server in three key ways:
scalability and performance, man-
ageability and monitoring, and
tools for the J2EE Power user.
www.pramati.com

Java COM

86 JANUARY 2000

Sun’s Withdrawal from ECMA May Not Signal End of World
Java is already an industry standard. Numer-
ous surveys attest to the existence of over a
million developers using standard Java.
Those million developers rely on Sun main-
taining Java as a standard so that [it] won’t
become splintered. This is one of the major
appeals of Java. Because Sun has developed,

maintained and protected the Java standard, the million-plus
programmers can rely on their Java software being portable to
many platforms. Sun’s legal battles with Microsoft over the
100% Pure Java standard was very significant. Microsoft was
attempting to destandardize Java and start a splintering
process [that would] weaken and potentially destroy Java. For-
tunately for us all, Microsoft did not succeed.

As with most successful industry standards (e.g., SQL, C
and FORTRAN), the standards are established at an industry
level first and then eventually canonized through a public stan-
dards process such as ANSI or ISO. In Sun’s standardization
effort they need to strike a balance among (a) making sure
there is one standard and avoid a diverging set of standards, (b)
involving the community in the process of developing the stan-
dard, and (c) protecting the standard from the threat of
Microsoft. This is a difficult balance to achieve and hence this
is one of the reasons you have seem some false starts in intro-
ducing Java into the public standardization domain. I believe
over time Sun will achieve this difficult balance.

The reality is that Sun’s Java community process is more
open to the Java community than a public standards process
would be. Typically speaking, in the public standards commit-
tees it’s the large vendors who have the loudest voice. Each of
these vendors has an agenda that is driven by their competitive
issues and not necessarily for the overall good of the commu-
nity. Those not represented by a large vendor aren’t typically
represented. I believe that those who are concerned about the
public standardization process are a very vocal minority and it
makes for interesting discussion, but the vast majority of Java
programmers are quite happy that Sun has maintained the
control over the Java standard to the degree necessary to avoid
divergence. The last thing the Java community wants is a pub-
lic standardization process that is prone to design by commit-
tee and disruption by Microsoft.

—Bruce Scott, CEO, PointBase, Inc.

My sense is that a solid majority of Java-
Lobby members and Java developers are
either supportive of Sun’s withdrawal from
ECMA or they do not feel that de jure stan-
dardization is important enough to matter. It
is unlikely, at this point, that any strong
opposition to Sun’s chosen course will

emerge within the ranks of the developer community. Sun’s
stewardship of Java has satisfied many, and I can say from

experience that Java developers are a demanding group.
Sun’s momentum is so strong that even powerful standards
bodies will be unlikely to gain a foothold with any alternative
standard specification.

—Rick Ross, Founder, JavaLobby

I’m saddened by this, but not overly con-
cerned. From my discussions with various
industry experts during the Java Business
Expo, I’m not surprised that Sun stopped the
process, as it involved releasing copyright for
parts of Java, something they’ve never been
willing to do. I think the basic core pieces of

Java that were to be standardized are in fact already a de facto
standard, so this was largely an empty exercise. The weight of
many companies is solidly behind Java; this won’t impact its
momentum. In fact,I see something positive in this. It’s been my
experience that standards bodies often move at the same pace
as glaciers. In a world where the whole business model can be
turned on a dime in 18 months, a standards organization will
never be able to adapt to a change. Having Sun in charge
allows us all to benefit from the quick reaction time of a single
entity. So I regard it as more of a minor curiosity and disap-
pointment than any real damage to the Java community as a
whole.

—Sean Rhody, Editor-in-Chief, Java Developer’s Journal

And the
Winners
Are...
Best IDE: JBuilder 3 (Inprise)

Best Java Application Server: Weblogic
4.5 (BEA Systems), SilverStream Enter-
prise Applications Server (SilverStream
Software), PowerTier EJB 5.0 (Persis-
tence Software), Dynamo 4.5 (ATG)

Best JavaBean: JFC Suite v2 (ProtoView
Corporation), GLG Toolkit (Generic Logic
Inc.), JClass Enterprise Suite (KL Group)

Best Java Database Product: PointBase
(PointBase, Inc.), Secant Extreme Persis-
tence Object Server (Secant Technologies)

Best Installation Tool: InstallShield
Java Edition (InstallShield), InstallAny-
where 2.5 (ZeroG Software)

Best Java Modeling Tool: GD Pro 4.0
(Advanced Software Technologies, Inc.),
Together/J (TogetherSoft), PowerDesign-
er 7.0 (Sybase), Rational Rose 98i
(Rational Software)

Best Java Book: Enterprise JavaBeans
by Richard Monson-Haefel

Best Java Profiling Tool: JProbe Profiler
and Memory Debugger (KL Group),
Optimizeit 3.0 (Intuitive Systems)

Best Java Testing Tool: WebLoad (Rad-
View), WinRunner (Mercury Interac-
tive), SilkTest (Segue Software)

Most Innovative Java Products of the
Year: AlphaWorks (IBM), JRun (Allaire
Corporation), Jasmine ii (Computer
Associates), Enterprise Reports 3.0
(EnterpriseSoft)

87JANUARY 2000

Java COM

Visualize
www.visualizeinc.com

Develop
Mentor

www.develop.com/

courses/ijava.htm

ADVERTISER URL PH PG

4TH PASS WWW.4THPASS.COM 877.484.7277 29

AMERICAN CYBERNETICS WWW.SOFTEXPORT.COM 800.899.0100 27

APACHE 2000 WWW.APACHECON.COM 650.404.9944 89

APPLIED REASONING WWW.APPLIEDREASONING.COM 800.260.2772 35

BEA WEBLOGIC WWW.WEBLOGIC.BEASYS.COM 800.817.4BEA 2

CAREER CENTRAL WWW.CAREERCENTRAL.COM/JAVA 888.946.3822 28

CAREER OPPORTUNITY ADVERTISERS 800.846.7591 90-101

CERTIFY ON-LINE WWW.CERTIFYONLINE.COM 877.JAVA YES 66

COMPUTERJOBS.COM WWW.COMPUTERJOBS.COM 39

CONCENTRIC NETWORK WWW.CONCENTRICHOST.NET 800.476.0196 77

DEVELOPMENTOR WWW.DEVELOP.COM 800.699.1932 87

ELIXIR TECHNOLOGY WWW.ELIXIRTECH.COM/DOWNLOAD/ 65 532.4300 63

EMBARCADERO WWW.EMBARCADERO.COM/ADMINISTER 65

EMBARCADERO WWW.EMBARCADERO.COM/DESIGN 67

EMBARCADERO WWW.EMBARCADERO.COM/DEVELOP 69

FIORANO SOFTWARE, INC. WWW.FIORANO.COM 408.354.3210 45

IAM CONSULTING WWW.IAMX.COM 212.580.2700 61

IBM WWW.IBM.COM/DEVELOPERWORKS 13

JAVA DEVELOPER’S JOURNAL WWW.JAVADEVELOPERSJOURNAL.COM 914.735.0300 79

JAVA DEVELOPER’S JOURNAL WWW.JAVADEVELOPERSJOURNAL.COM 914.735.0300 79-82

JAVACON 2000 WWW.JAVACON2000.COM 914.735.0300 83

JAVELIN WWW.JAVELINTECH.COM 612.630.1063 47

JDJ CONSULTING SERVICES WWW.OPENJOBS@SYS-CON.COM 41

JDJ STORE WWW.JDJSTORE.COM 888.303.JAVA 88

KL GROUP INC. WWW.KLGROUP.COM/PERFORMANCE 888.328.9597 15

KL GROUP INC. WWW.KLGROUP.COM/INTERFACE 888.328.9596 71

KL GROUP INC. WWW.KLGROUP.COM/DEADLINE 888.328.9596 104

METAMATA, INC. WWW.METAMATA.COM 510.796.0915 49

NEW ATLANTA WWW.NEWATLANTA.COM/ 678.366.3211 57

NUMEGA WWW.COMPUWARE.COM/NUMEGA 800.4-NUMEGA 19

OBJECT DESIGN WWW.OBJECTDESIGN.COM/JAVLIN 800.962.9620 52-53

OBJECTSWITCH CORPORATION WWW.OBJECTSWITCH.COM/IDC35/ 415.925.3460 55

OFFICE.COM 212.995.7742 47

PERSISTENCE WWW.PERSISTENCE.COM 17

POINTBASE WWW.POINTBASE.COM/JDJ 877.238.8798 25

PRAMATI WWW.PRAMATI.COM/J2EE.HTM 914.876.3007 51

PROTOVIEW WWW.PROTOVIEW.COM 800.231.8588 3

QUICKSTREAM SOFTWARE WWW.QUICKSTREAM.COM 888.769.9898 20

RESPONSE SYSTEMS SERVICES, INC. 212.295.4305 41

RIVERTON SOFTWARE CORPORATION WWW.RIVERTON.COM 781.229.0070 85

SEGUE SOFTWARE WWW.SEGUE.COM/ADS/CORBA 800.287.1329 11

SIC CORPORATION WWW.ACCESS21.CO.KR 822.227.398801 43

SILVERSTREAM SOFTWARE, INC. WWW.SILVERSTREAM.COM 888.823.9700 103

SOFTWARE AG WWW.SOFTWAREAG.COM/BOLERO 925.472.4900 21

SYBASE INC. WWW.SYBASE.COM 800.8.SYBASE 31

SYMANTEC WWW.VISUALCAFE.COM 4

TIDESTONE TECHNOLOGIES WWW.TIDESTONE.COM 800.884.8665 37

TOGETHERSOFT LLC WWW.TOGETHERSOFT.COM 919.772.9350 6

VISICOMP, INC. WWW.VISICOMP.COM 831.335.1820 73

VISUALIZE INC. WWW.VISUALIZEINC.COM 602.861.0999 87

VSI WWW.VSI.COM/BREEZE 800.556.4VSI 75

YOUCENTRIC WWW.YOUCENTRIC.COM/NOBRAINER 888.462.6703 33

ADVERTISINGINDEX

Java COM

88 JANUARY 2000

JDJStore
www.jdjstore.com

89JANUARY 2000

Java COM

Apachecon 2000
www.apachecon.com

Java COM

90 JANUARY 2000

Employment
Ad

91JANUARY 2000

Java COM

Employment
Ad

Java COM

92 JANUARY 2000

Employment
Ad

93JANUARY 2000

Java COM

Employment
Ad

Java COM

94 JANUARY 2000

Employment
Ad

95JANUARY 2000

Java COM

Employment
Ad

Java COM

96 JANUARY 2000

Employment
Ad

97JANUARY 2000

Java COM

Employment
Ad

Java COM

98 JANUARY 2000

Employment
Ad

99JANUARY 2000

Java COM

Employment
Ad

Java COM

100 JANUARY 2000

Employment
Ad

101JANUARY 2000

Java COM

Employment
Ad

Java COM

102 JANUARY 2000

Innovation Without Disruption
WRITTEN BY GEORGE PAOLINI

george.paolini@sun.com

I M H O

W
hen I was a lad, I tell my kids, life was
hard. We had to walk everywhere,
for instance. And not only that, we
had to carry our own data. On things
called floppies. Back then, we had to
manually move information from
one computer to the next. We did all
this work by hand.

When modems came along, we were sure we could do away with
the floppies. Of course, the first modems I used transmitted at 300
baud – about the speed of a John Deere tractor in a cornfield. And
then there were the protocol incompatibilities. On my first job, for
instance, I spent days with a couple of black boxes and cumbersome
acoustic couplers trying to get a Compugraphic in one office to wake
up the Harris in another. (By the way, these things were real comput-
ers, green-screen, line-editing rigs, not the fancy turbo-graphics
models of today.)

I never did get the machines to talk. Even dozens of calls to the two
companies produced no workable solution. Apparently the
Harris – the newer model – had made some “refine-
ments” that the Compugraphic couldn’t under-
stand.

This was my first, but unfortunately not my
last, brush with incompatible technologies. I
spent all of the ’80s and the early ’90s with a lin-
gering question: Why does the cost of innovation
have to be disruption? It seemed every new tech-
nology couldn’t just augment the previous para-
digm, it had to rip it to shreds and replace it.
(Not that I take it personally, you under-
stand, but I still have emotional scars as
a result of the transition from LPs to
CDs.)

Then, just five years ago this
month, I saw the light. Well, actually,
I saw a prototype Java Web browser. The
screen was singing, literally. Hard to believe, but in December
of ’94 the world was still pretty impressed with the ability to repre-
sent a static page of information uniformly on any computer. And
here was executable content inside a Web browser. It was utilizing
the Web protocols, not breaking them. Innovation without disrup-
tion.

The technology advancements the Java community has made in
the ensuing years closing out this decade are nothing if not phe-
nomenal, culminating with the release this month of Java 2, Enter-
prise Edition. We’ve gone from dancing Web pages to harvesting all
that legacy business logic and extending it out to the network. So
what’s made it work? Well, to be sure, Sun has done its part. So have
Oracle, IBM and about 200 licensees of the technology. And a mil-
lion-plus Java programmers, such as you.

The key really has been one simple rule: innovate compatibly.
Make any changes you want, but don’t break anything in the process.

We formalized this rule in what we now call the Community
Source License and the Java Community Process.

The Community Source Licensing program means access to the
source code by simply clicking on a Web page. As easy as that click is, it
comes with a responsibility: innovate, but remain compatible. Take the
source code, use it for R&D purposes, modify it if you wish. Once you
reach the stage of creating a product, you’re required to pass compati-
bility testing to ensure that these modifications don’t break anything.

Beyond the licensing model is the Java Community Process, a
framework for evolving the Java platform that harnesses the intellec-
tual capital of the entire Java community. Here’s how it works.

Any company, organization or individual who has signed a Java
Specification Participation Agreement (JSPA) can submit a request for
new or additional functionality to the Java platform. If the request
passes the first set of hurdles (a check to ensure that this functionality
doesn’t already exist or isn’t underway as a project somewhere), an

expert group is formed.
This group is responsible for writ-

ing the specification. The leader of
this group, usually the individual
who submitted the request, is
responsible for developing consen-

sus within the group as well as ren-
dering tie-breaking decisions when
consensus can’t be reached.

After the spec has been drafted and
reviewed by the 240 companies that

have signed JSPAs, it is posted for
public review and comment. Once
those comments are reviewed and

necessary changes are made, the draft is
posted. Then the hard work begins – to

produce a reference implementation and
compatibility tests. When finalized, these are also

posted.
That’s the Java Community Process in a nutshell.

Since the process was introduced, 41 requests have been submitted
to augment the platform; 36 have been approved.

Innovation without disruption. Which leads me to wonder what
stories of hardships you’ll have to share with your kids….

AUTHOR BIO
George Paolini, vice president of marketing of Software Products and Platforms at Sun Microsystems, is
responsible for managing all public relations; Internet, strategic and technical marketing; branding; and
trade shows and events within that business unit. George is also a member of the Java Developer’s
Journal Editorial Board.

103JANUARY 2000

Java COM

SilverStream
www.silverstream.com

Java COM

104 JANUARY 2000

KL Group
“Deadline catching

up with you”
www.klgroup.com/deadline

